
DOI:10.1587/transinf.2024FCP0003

Publicized:2024/08/08

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
A Bigram Based ILP Formulation for Break Minimization in Sports
Scheduling Problems

Koichi FUJII†a), Nonmember and Tomomi MATSUI†b), Member

SUMMARY
Constructing a suitable schedule for sports competitions is a crucial

issue in sports scheduling. The round-robin tournament is a competition
adopted in many professional sports. For most round-robin tournaments,
it is considered undesirable that a team plays consecutive away or home
matches; such an occurrence is called a break. Accordingly, it is preferable
to reduce the number of breaks in a tournament. A common approach is to
first construct a schedule and then determine a home-away assignment based
on the given schedule to minimize the number of breaks (first-schedule-
then-break).

In this study, we concentrate on the problem that arises at the sec-
ond stage of the first-schedule-then-break approach, namely, the break min-
imization problem (BMP). We propose a novel integer linear programming
formulation called the “bigram based formulation.” The computational ex-
periments show its effectiveness over the well-known integer linear pro-
gramming formulation. We also investigate its valid inequalities, which
further enhances the computational performance.
key words: sports scheduling; tournament scheduling; round robin; graph
theory; integer linear programming

1. Introduction

Constructing a suitable schedule for sports competitions is a
crucial issue in sports scheduling. A (single) round-robin
tournament (RRT) is a simple sports competition, where
each team plays against every other team once. The RRT is a
competition framework adopted in many professional sports
such as soccer and basketball, especially in Europe. In this
study, we consider an RRT schedule with the following prop-
erties:

• Each team plays one match in each slot, i.e., the day
when a match is held.

• Each team has a home stadium, and each match is held
at the home stadium of one of the two playing teams.
When a team plays amatch at the home of the opponent,
we state that the team plays away.

• Each team plays each other team exactly once at home
or away.

It is considered undesirable that a team plays consecu-
tive away or home matches in order to reduce player’s bur-
den; such an occurrence is called a break.

Accordingly, the number of breaks in a tournament
should be reduced. To construct a tournament schedule
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with fewer breaks, the following two decomposition ap-
proaches are widely used: (i) first-break-then-schedule [1–7]
and (ii) first-schedule-then-break [1, 8–12]. In the first-
break-then-schedule approach, an HA-assignment is gener-
ated in the first stage, which assigns a home game or an away
game to each team in each slot. The second stage finds a
timetable consistent with the generated HA-assignment, if it
exists. Contrarily, in the first-schedule-then-break approach,
a timetable is constructed at the first stage. The second stage
determines the home and away teams of each match. In this
approach, the home advantage is further determined in the
second stage. For detailed information, refer to [13]. In
this study, we focus on a problem occurring in the second
stage of the first-schedule-then-break approach. This prob-
lem is commonly called the break minimization problem,
which determines an HA-assignment minimizing the num-
ber of breaks.

An integer linear programming (ILP) formulation of the
break minimization problem was proposed by Trick [8]. Re-
cent development of the general ILP solvers enables to solve
larger problems dramatically [14, 15]. The enhanced pre-
solving and cutting planes technique contributed to improve
the dual bound, and the various heuristics search within
branch-and-bound contributed to the primal bound. Nev-
ertheless, the efficiency of ILP methods is significantly af-
fected by problem formulations. The difference in formu-
lations affects not only the computational effort required to
solve LP relaxation but also the process of finding primal so-
lutions or improving dual bound by cutting planes. Thus, in-
vestigating better formulations is crucial to improve the com-
putational performance.

In this study, we propose a novel ILP formulation called
the bigram based formulation for the break minimization
problem. We demonstrate its advantage over the well-known
ILP formulation proposed by Trick [8] through computa-
tional experiments. We also investigate the valid inequal-
ities of bigram based formulation, which further improves
the computational performance.

The remainder of this paper is organized as follows.
Section 2 presents a literature review of the break minimiza-
tion problem. Section 3 introduces our bigram based for-
mulation and its valid inequalities. Section 4 presents the
computational results of the bigram based formulation and
evaluation of its valid inequalities. The Appendix provided
after the main sections presents detailed information regard-
ing Trick’s ILP formulation. We also compare our formu-
lation with the QUBO formulation, which is solved using
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a general mixed integer nonlinear solver and a specialized
QUBO solver.

2. Literature Review

The research on the break minimization problem (BMP), in-
troduced by the seminal work of de Werra [16], has steadily
evolved. By 𝐵min (𝜏), we denote the minimum total num-
ber of breaks over all possible HA-assignments for a given
timetable 𝜏 of an RRT with 2𝑛 teams. For the lower bound
of 𝐵min (𝜏), de Werra [16] demonstrated that any schedule of
a round-robin tournament has at least 2𝑛 − 2 breaks. For the
upper bound, Miyashiro and Matsui [9] proposed an algo-
rithm for finding an HA-assignment satisfying the condition
that the number of breaks is less than or equal to 𝑛(𝑛−1) for
a given timetable. Post andWoeginger [11] revised this anal-
ysis and improved the upper bound of the number of breaks
from 𝑛(𝑛 − 1) to (𝑛 − 1)2 if the number of teams 2𝑛 is not a
multiple of 4.

Miyashiro and Matsui [9] have proposed a polynomial
time algorithm for deciding whether there exists an HA-
assignment with exactly 2𝑛 − 2 breaks for a given timetable.
They also demonstrated the equivalence of the break mini-
mization and break maximization problems. Elf, Jünger, and
Rinaldi [17] conjectured that the problem of finding 𝐵min (𝜏)
is NP-hard, which have not been proven yet to the best of our
knowledge.

Régin [18] proposed a constraint programming model
for BMP, which was able to solve instances containing up to
20 teams. Trick [8] proposed an ILP formulation for BMP
in an RRT, which was able to solve instances containing
up to 22 teams. Van Hentenryck and Vergados [19] pro-
posed a simulated annealing algorithm for BMP to rapidly
obtain near-optimal solutions. Elf, Jünger, and Rinaldi [17]
showed that BMP could be transformed into a maximum cut
problem (MAX CUT); their proposed methods were able
to solve instances of up to 26 teams. Miyashiro and Mat-
sui [10] formulated BMP as MAX RES CUT. They also ap-
plied an approximation algorithm for MAXRES CUT based
on the semi-definite programming relaxation, which is pro-
posed by Goemans and Williamson [20]. Recently, Peng,
Clark, and Dahbura [21] applied reinforcement learning to a
first-schedule-then-break approach and analyzed the behav-
ior of agents in home-away assignments. Kuramata, Katsuki,
andNakata [22] applied quantum annealing, one of the quan-
tum techniques, in a heuristic manner to rapidly obtain sub-
optimal solutions of BMP and compared their results with
those obtained using the ILP formulation proposed by Trick.

3. Break Minimization Description and Novel ILP for-
mulation

3.1 Preliminaries

In this section, we introduce some notations and formal
definitions. We use the following notations and symbols
throughout this paper:

• 2𝑛: number of teams, where 2𝑛 ≥ 4,
• 𝑇 = {1, 2, . . . , 2𝑛}: set of teams,
• 𝑆 = {1, 2, . . . , 2𝑛 − 1}: set of slots.
A schedule of an RRT is described as a pair of a

timetable and an HA-assignment, which is defined below. In
this study, we assume that a timetable 𝜏 of an RRT is a matrix
whose rows and columns are indexed by 𝑇 and 𝑆, respec-
tively. An element 𝜏(𝑡, 𝑠) denotes the opponent that plays
against team 𝑡 at slot 𝑠. A timetable 𝜏 (of an RRT sched-
ule) should satisfy the following conditions: (i) a row of 𝜏
indexed by team 𝑡 ∈ 𝑇 is a permutation of teams in 𝑇 \ {𝑡},
and (ii) 𝜏(𝜏(𝑡, 𝑠), 𝑠) = 𝑡 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆). Table 1 shows a
timetable for an RRT schedule of six teams.

Table 1 Timetable
Slot 1 2 3 4 5
team 1 3 4 2 5 6
team 2 6 3 1 4 5
team 3 1 2 5 6 4
team 4 5 1 6 2 3
team 5 4 6 3 1 2
team 6 2 5 4 3 1

Table 2 HA-assignment
Slot 1 2 3 4 5
team 1 0 0 1 1 1
team 2 0 0 0 1 0
team 3 1 1 0 0 0
team 4 0 1 0 0 1
team 5 1 0 1 0 0
team 6 1 1 1 1 0

A team is defined to be at home in slot 𝑠 if the team
plays a match at its home stadium in 𝑠; otherwise away in 𝑠.
An HA-assignment (home-away assignment) is a 0-1 matrix
Z = {𝑧𝑡 ,𝑠} whose rows and columns are indexed by 𝑇 and
𝑆, respectively. A value of 𝑧𝑡 ,𝑠 is equal to 1 if team 𝑡 plays
a match in slot 𝑠 at home; otherwise, it is 0. For a given
timetable 𝜏, we say that Z is consistent with 𝜏 when 𝑧𝑡 ,𝑠 =
1 − 𝑧𝜏 (𝑡 ,𝑠) ,𝑠 holds for each (𝑡, 𝑠) ∈ 𝑇 × 𝑆. Table 2 shows an
example of an HA-assignment which is consistent with the
timetable presented in Table 1.

Given an HA-assignment Z, we say that team 𝑡 has a
break at slot 𝑠 ∈ 𝑆\{1} if 𝑧𝑡 ,𝑠−1 = 𝑧𝑡 ,𝑠 holds. For example, in
Table 2, team 1 has a break at slot 1, as there are consecutive
away matches (𝑧1,1 = 𝑧1,2 = 0). The number of breaks in
a home–away assignment is defined as the total number of
breaks belonging to all teams.

Following the definitions introduced above, we are now
ready to present a formal definition of BMP:
Break Minimization Problem: Given a timetable 𝜏, the
break minimization problem finds an HA-assignment consis-
tent with 𝜏 that minimizes the number of breaks.

3.2 A bigram based formulation

In this section, we propose a novel ILP formulation, called a
bigram based formulation, for BMP.
Decision Variables

In our model, each team is represented as being in one
of two states in each slot: “home” (H) or “away” (A). When
considering consecutive slots, each team has one of the four
possible sequential pairs of states: home-home (HH), home-
away (HA), away-home (AH), and away-away (AA). To rep-
resent these state pairs, we introduce four binary variables;
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𝑥HH
𝑡 ,𝑠 , 𝑥HA

𝑡 ,𝑠 , 𝑥AH
𝑡 ,𝑠 , and 𝑥AA

𝑡 ,𝑠 . The value of each variable is de-
termined based on the corresponding states of team 𝑡 across
two consecutive slots, namely slots 𝑠 and 𝑠 + 1. Note that
these variables are defined for (𝑡, 𝑠) ∈ 𝑇 × 𝑆− , where we
define 𝑆− = 𝑆 \ {2𝑛 − 1}. The variable 𝑥HH

𝑡 ,𝑠 is set to 1 if
the team is in the HH state and 0 otherwise. Similarly, 𝑥HA

𝑡 ,𝑠 ,
𝑥AH
𝑡 ,𝑠 , and 𝑥AA

𝑡 ,𝑠 are set to 1 if the team 𝑡 is in the HA, AH,
and AA states, respectively, and 0 otherwise. This binary
encoding facilitates a straightforward and efficient represen-
tation of the team’s state transitions. Owing to representing
all pairs of states across consecutive slots, we refer to our
formulation as a bigram based formulation. This name is in-
spired by the concept of a “bigram” in linguistic theory, in
which it refers to a sequence of two adjacent elements. We
note that Trick’s ILP formulation, which also defines status
transition variables, lacks two out of the four possible status
transitions: AA and HH.

In the following, we describe the constraints of our bi-
gram based formulation.
0-1 Constraint
As all the variables are binary, we have the following:

𝑥HH
𝑡 ,𝑠 , 𝑥

HA
𝑡 ,𝑠 , 𝑥

AH
𝑡 ,𝑠 , 𝑥

AA
𝑡 ,𝑠 ∈ {0, 1} (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−). (1)

Single State Assignment Constraints
Every team is required to play in one of four distinct modes
for each pair of consecutive slots: away-away (AA), home-
home (HH), away-home (AH), and home-away (HA). This
condition is expressed as:

𝑥AA
𝑡 ,𝑠 + 𝑥HH

𝑡 ,𝑠 + 𝑥AH
𝑡 ,𝑠 + 𝑥HA

𝑡 ,𝑠 = 1 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−). (2)

Sequencing Constraint
Because each team must assume exactly one state, home or
away for each slot, Sequencing Constraint is modeled as:

𝑥HA
𝑡 ,𝑠 + 𝑥AA

𝑡 ,𝑠 = 𝑥AH
𝑡 ,𝑠+1 + 𝑥AA

𝑡 ,𝑠+1 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−), (3)

𝑥AH
𝑡 ,𝑠 + 𝑥HH

𝑡 ,𝑠 = 𝑥HA
𝑡 ,𝑠+1 + 𝑥HH

𝑡 ,𝑠+1 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−). (4)
However, constraint (4) can be omitted, as it is implied by
constraints (2) and (3).
HA-Consistency Constraint
To obtain an HA-assignment that is consistent with a given
timetable, we introduce the HA-Consistency Constraint.
This constraint is expressed as follows:

𝑥AA
𝑡 ,𝑠 + 𝑥AH

𝑡 ,𝑠 = 𝑥HA
𝜏 (𝑡 ,𝑠) ,𝑠 + 𝑥HH

𝜏 (𝑡 ,𝑠) ,𝑠 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−),
𝑥AA
𝑡 ,2𝑛−2 + 𝑥HA

𝑡 ,2𝑛−2 = 𝑥AH
𝜏 (𝑡 ,2𝑛−1) ,2𝑛−2 + 𝑥HH

𝜏 (𝑡 ,2𝑛−1) ,2𝑛−2

(∀𝑡 ∈ 𝑇). (5)

Symmetry Breaking Constraint
Reversing all the home and away assignments in an optimal
solution should also yield an optimal solution. Therefore, we
can impose the restriction that one of the teams must play at
home in slot 1. This constraint is expressed as follows:

𝑥HH
1,1 + 𝑥HA

1,1 = 1

Now we have a bigram based formulation (BBF) for BMP:

BBF: minimize
∑
𝑡∈𝑇

∑
𝑠∈𝑆−

(𝑥HH
𝑡 ,𝑠 + 𝑥AA

𝑡 ,𝑠 )

subject to (1), (2), (3), (5),

which minimizes the number of breaks.

3.3 Valid Inequalities

In this section, we propose a valid inequality for our BBF.
For any pair of different teams 𝑡1, 𝑡2 ∈ 𝑇, 𝑠(𝑡1, 𝑡2) indicates
the slot in which teams 𝑡1 and 𝑡2 have a match. Clearly, we
have 𝑠(𝑡1, 𝑡2) = 𝑠(𝑡2, 𝑡1). We define the set Φ as follows:

Φ := {(𝑡1, 𝑡2, 𝑡3) ∈ 𝑇3 | 𝑠(𝑡1, 𝑡2) < 𝑠(𝑡2, 𝑡3) < 𝑠(𝑡1, 𝑡3)}.

In the above definition, we assume that each triplet
(𝑡1, 𝑡2, 𝑡3) ∈ Φ ensures that these three teams are mutually
different.

Theorem 3.1. For any (𝑡1, 𝑡2, 𝑡3) ∈ Φ, the following in-
equality:(

−𝑥HH
𝑡1 ,𝑠1 +

𝑠3−1∑
𝑠=𝑠1+1

𝑥HA
𝑡1 ,𝑠

)
+

(
−𝑥HH

𝑡2 ,𝑠1 +
𝑠2−1∑
𝑠=𝑠1+1

𝑥HA
𝑡2 ,𝑠

)
+

(
−𝑥HH

𝑡3 ,𝑠2 +
𝑠3−1∑
𝑠=𝑠2+1

𝑥HA
𝑡3 ,𝑠

)
≤ 𝑠3 − 𝑠1 − 2 (6)

is a valid inequality of the BBF where 𝑠1 = 𝑠(𝑡1, 𝑡2), 𝑠2 =
𝑠(𝑡2, 𝑡3), 𝑠3 = 𝑠(𝑡1, 𝑡3).

First, we present the following two lemmas.

Lemma 3.2. For any 𝑡 ∈ 𝑇 and ∀(𝑠′, 𝑠′′) ∈ 𝑆−×𝑆 satisfying
that 𝑠′′ − 𝑠′ is an even positive, any feasible solution 𝒙 of the
BBF satisfies

−𝑥HH
𝑡 ,𝑠′ +

𝑠′′−1∑
𝑠=𝑠′+1

𝑥HA
𝑡 ,𝑠 ≤ 𝑠′′ − 𝑠′

2
. (7)

When the equality is satisfied, team 𝑡 plays away games at
both slots 𝑠′ and 𝑠′′.

Proof of Lemma 3.2: We will prove this by induction. First
we assume that 𝑠′′ − 𝑠′ = 2. The inequality (7) holds since
−𝑥HH

𝑡 ,𝑠′ + 𝑥HA
𝑡 ,𝑠′+1 ≤ 1. When the equality satisfied, then 𝑥HH

𝑡 ,𝑠′ =

0 and 𝑥HA
𝑡 ,𝑠′+1 = 1 hold. This indicates 𝑥AH

𝑡 ,𝑠′ = 1, which proves
the lemma for this case. Next, we assume that the lemma
holds for 𝑠′′ − 𝑠′ = 2𝑘 where 𝑘 > 0. We will prove that the
lemma holds for 𝑠′′− 𝑠′ = 2𝑘 +2 under this assumption. The
inequality (7) holds since

− 𝑥HH
𝑡 ,𝑠′ +

𝑠′′−1∑
𝑠=𝑠′+1

𝑥HA
𝑡 ,𝑠 = −𝑥HH

𝑡 ,𝑠′ +
𝑠′′−3∑
𝑠=𝑠′+1

𝑥HA
𝑡 ,𝑠 +

𝑠′′−1∑
𝑠=𝑠′′−2

𝑥HA
𝑡 ,𝑠

≤ 𝑘 + 𝑥HA
𝑡 ,𝑠′′−2 + 𝑥HA

𝑡 ,𝑠′′−1 ≤ 𝑘 + 1.
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When the equality is satisfied, then the equalities −𝑥HH
𝑡 ,𝑠′ +∑𝑠′′−3

𝑠=𝑠′+1 𝑥
HA
𝑡 ,𝑠 = 𝑘 and

∑𝑠′′−1
𝑠=𝑠′′−2 𝑥

HA
𝑡 ,𝑠 = 1 hold since∑𝑠′′−1

𝑠=𝑠′′−2 𝑥
HA
𝑡 ,𝑠 ≤ 1. Then, team 𝑡 plays away games at slot 𝑠′

and slot 𝑠′′ − 2 by the assumption. The equality 𝑥HA
𝑡 ,𝑠′′−1 = 1

holds and therefore team 𝑡 plays away game at slot 𝑠′′. This
proves the lemma. ■

Lemma 3.3. For any 𝑡 ∈ 𝑇 and ∀(𝑠′, 𝑠′′) ∈ 𝑆−×𝑆 satisfying
that 𝑠′′ − 𝑠′ is an odd positive, any feasible solution 𝒙 of the
BBF satisfies

−𝑥HH
𝑡 ,𝑠′ +

𝑠′′−1∑
𝑠=𝑠′+1

𝑥HA
𝑡 ,𝑠 ≤ 𝑠′′ − 𝑠′ − 1

2
. (8)

When the equality is satisfied, team 𝑡 plays (at least one)
away game at either slot 𝑠′ or slot 𝑠′′.

Proof of Lemma 3.3: First we assume that 𝑠′′ − 𝑠′ = 1. The
inequality (8) holds since −𝑥HH

𝑡 ,𝑠′ ≤ 0. When the equality
satisfied, then 𝑥HH

𝑡 ,𝑠′ = 0 holds. This indicates team 𝑡 plays
at least one away game at either slot 𝑠′ or slot 𝑠′′. Next, we
assume that the lemma holds for 𝑠′′−𝑠′ = 2𝑘+1where 𝑘 > 0.
We will prove that the lemma holds for 𝑠′′−𝑠′ = 2𝑘+3 under
this assumption. The inequality (8) holds by the assumption
since

− 𝑥HH
𝑡 ,𝑠′ +

𝑠′′−1∑
𝑠=𝑠′+1

𝑥HA
𝑡 ,𝑠 = −𝑥HH

𝑡 ,𝑠′ +
𝑠′′−3∑
𝑠=𝑠′+1

𝑥HA
𝑡 ,𝑠 +

𝑠′′−1∑
𝑠=𝑠′′−2

𝑥HA
𝑡 ,𝑠

≤ 𝑘 + 𝑥HA
𝑡 ,𝑠′′−2 + 𝑥HA

𝑡 ,𝑠′′−1 ≤ 𝑘 + 1.

When the equality is satisfied, then the equalities −𝑥HH
𝑡 ,𝑠′ +∑𝑠′′−3

𝑠=𝑠′+1 𝑥
HA
𝑡 ,𝑠 = 𝑘 and

∑𝑠′′−1
𝑠=𝑠′′−2 𝑥

HA
𝑡 ,𝑠 = 1 hold since∑𝑠′′−1

𝑠=𝑠′′−2 𝑥
HA
𝑡 ,𝑠 ≤ 1. Then, team 𝑡 plays away games at slot

𝑠′ or slot 𝑠′′ − 2 by the assumption. If team 𝑡 does not plays
at slot 𝑠′, then the equality 𝑥HA

𝑡 ,𝑠′′−1 = 1 holds and therefore
team 𝑡 plays away game at slot 𝑠′′. This proves the lemma.
■

Now we prove the validity of the inequality (6).
Proof of Theorem 3.1: Because (𝑠3 − 𝑠1) + (𝑠2 − 𝑠1) + (𝑠3 −
𝑠2) = 2𝑠3 − 2𝑠1 is an even integer, {𝑠3 − 𝑠1, 𝑠2 − 𝑠1, 𝑠3 − 𝑠2}
consists of three even numbers or includes exactly two odd
numbers.
Case 1: The set {𝑠3 − 𝑠1, 𝑠2 − 𝑠1, 𝑠3 − 𝑠2} consists of three
even numbers. Lemma 3.2 implies that the left-hand side of
the inequality (6) is less than or equal to ((𝑠3 − 𝑠1) + (𝑠2 −
𝑠1) + (𝑠3− 𝑠2))/2 = 𝑠3− 𝑠1. Assume, on the contrary, that the
left hand side of (6) is strictly greater than 𝑠3 − 𝑠1 − 2, i.e.,
either 𝑠3 − 𝑠1 or 𝑠3 − 𝑠1 − 1. Lemma 3.2 states that at least
two teams play two away games in the three matches among
teams {𝑡1, 𝑡2, 𝑡3}. Thus, there are at least four away games in
the three matches among {𝑡1, 𝑡2, 𝑡3}. This is a contradiction.
Case 2: The set {𝑠3 − 𝑠1, 𝑠2 − 𝑠1, 𝑠3 − 𝑠2} includes exactly
two odd numbers. Lemmas 3.2 and 3.3 imply that the left-
hand side of the inequality (6) is less than or equal to ((𝑠3 −
𝑠1) + (𝑠2 − 𝑠1) + (𝑠3 − 𝑠2) − 2)/2 = 𝑠3 − 𝑠1 − 1. Assume,
on the contrary, that the left hand side of (6) is equal to 𝑠3 −

𝑠1−1. Lemmas 3.2 and 3.3 indicate that in the three matches
among teams {𝑡1, 𝑡2, 𝑡3}, every team plays at least one away
game and at least one team plays two away games. Thus,
there are at least four away games in the threematches among
{𝑡1, 𝑡2, 𝑡3}. This is a contradiction. ■

From Theorem 3.1, we can derive the following corollary.

Corollary 3.4. When (𝑠1, 𝑠2, 𝑠3) is a sequence of consecu-
tive three integers, we obtain the following inequality:

𝑥HA
𝑡1 ,𝑠1+1 ≤ 𝑥HH

𝑡1 ,𝑠1 + 𝑥HH
𝑡2 ,𝑠1 + 𝑥HH

𝑡3 ,𝑠2 (9)

is a valid inequality of the BBF.

We present an example of the valid inequality (9) using
the timetable depicted in Table 1. For (1, 2, 5) ∈ 𝑇3, where
(5, 1, 2) ∈ Φ and (𝑠1, 𝑠2, 𝑠3) = (2, 3, 4), the corresponding
valid inequality can be expressed as 𝑥HA

5,3 ≤ 𝑥HH
5,2 +𝑥

HH
1,2 +𝑥HH

2,3 .

4. Numerical Results

In this section, we describe our assessment of the bigram
based formulation for BMP. Through computational experi-
ments, we will demonstrate its effectiveness compared with
the well-known ILP formulation.

SCIP [23] is a non-commercial solver, which works as
a general framework based on branching for constraint inte-
ger and mixed integer programming using branch-cut-and-
price. The methods for processing various constraints can
be implemented through constraint handlers, and advanced
methods like primal heuristics, branching rules, and cutting
plane separators can be integrated as plugins. In addition to
plugins supplied as part of the SCIP distribution, new plug-
ins can be created by users. This functionality is particularly
advantageous in cases where users wish to manually incor-
porate cutting planes, as demonstrated in this study. We used
the Python interface PySCIPOpt with SCIP 8.0.3 in our ex-
periments for evaluating the performance of different formu-
lations.

The experiments were performed on a Linux machine
with AMD Ryzen 9 5900X 12-Core Processor at 3.7 GHz,
64GB of RAM, Ubuntu 22.04 LTS.

4.1 Test set

Although there is a long history of applying optimization
techniques to sports scheduling problems, there has been a
lack of standardized benchmarks. This has made it difficult
for researchers to fairly compare new techniques for solving
problems. From the perspective of practitioners, evaluating
proposed methods has also been challenging. Van Bulck,
Goossens, Schönberger, and Guajardo [24] have made sig-
nificant efforts to address this issue. They developed a
project called RobinX, aimed to create a standardized bench-
mark by gathering test sets and making them publicly avail-
able on a website. For details, please refer to [24]. It includes
122 instances of BMP, named TC_BM instances. We se-
lected all of them for the test set.



FUJII and MATSUI: A BIGRAM BASED ILP FORMULATION FOR BREAK MINIMIZATION IN SPORTS SCHEDULING PROBLEMS
5

4.2 Comparison of Trick’s formulation and bigram based
formulation

In this section, we compare the results of Trick’s formula-
tion [8] (TF) and bigram based formulation (BBF). Both for-
mulations were implemented via PySCIPOpt. We set the
time limit to 3,600 seconds.

Table 3 presents the comparison results. In this table,
we compare two Integer Linear Programming (ILP) formula-
tions, namely “TF” and “BBF,” in terms of their performance
on TC_BM instances.

The first column indicates the number of the team. The
second and third columns, under the header “#variables,” dis-
play the average number of variables in the presolved model.
The average numbers of variables in the original model are
shown in parentheses. The fourth and fifth columns, under
the header “#constraints,” display the average number of con-
straints in the presolved model. The average numbers of
columns in the original model are also shown in parenthe-
ses. ILP solver typically simplifies the problem by identify-
ing and eliminating redundant variables and constraints. We
have presented them because the size of the reduced model
indicates the intrinsic size. The sixth and seventh columns,
labeled “#solved,” show the number of problems successfully
solved out of the total attempted problems for each formu-
lation. For example, “4/5” means that four out of five in-
stances were solved within the time limit. The eighth and
ninth columns, labeled “TF” and “BBF,” respectively, under
the header “#nodes,” display the average number of nodes
explored in the branch-and-bound algorithm. The tenth and
eleventh columns, under the header “run time [s],” indicate
the average computational time (seconds) required to solve
the problems. If the solving process reaches the time limit,
the reported number of nodes and computational time rep-
resent the values at the end of the interrupted solving. The
twelfth and thirteenth columns, under the header “gap(%),”
indicate the average gap at the end of solving. If the instance
is solved within the time limit, then the gap is 0.00%.

This table indicates the problem size and performance
differences between the two ILP formulations across various
problem sizes. The number of (reduced) constraints in the
bigram based formulation is smaller than that in TF, while
the number of (reduced) variables is larger. The performance
differences indicate that BBF outperforms TF regarding suc-
cess rates when solving instances and the average runtime.
For example, for 2𝑛 = 30, bigram based formulation suc-
cessfully solved three out of five instances, while TF failed to
solve any instances. Although no instances could be solved
within the time limit for 2𝑛 ≥ 34, BBF still outperforms TF
regarding the average gap.

There are two reasons for the effectiveness of BBF.
First, the size of the tree generated during the branch-and-
bound process is much smaller, as seen under the ‘#nodes’
header of Table 3. Second reason is its advantage in solving
LP relaxation. To observe the difference in solving LP re-
laxations, we conducted experiments with two settings: dis-

abling all cutting plane separators and imposing a node limit
of 1,000. Disabling all cutting plane separators means that
the solver is imposed not to generate valid inequalities dur-
ing the solution process. Differences in LP solving can arise
from variations in two key aspects: the additional valid in-
equalities and the size of the branch and bound tree. There-
fore, we restricted them so that we can observe the differ-
ences without any side effects. Figure 1 shows the compar-
ison of LP iterations per node. The graph presents a com-
parative analysis of the number of iterations required by the
simplex method in two different formulations. The x-axis
denotes the size of the instances, 2𝑛. The y-axis indicates
the average number of simplex method iterations per node.
The average is calculated across several instances. The result
indicates that BBF requires fewer LP iterations when solving
nodes. The relaxation problem of BBF has advantages in the
perspective of solving node relaxation via simplex method,
despite having more decision variables.

Fig. 1 LP iteration per node

4.3 Assessment of Valid Inequality

In this section, we investigate the effectiveness of the valid
inequality (9) for the proposed BBF. The valid inequalities
were implemented via separator plugins of PySCIPTOpt.
This callback is executed during the subproblem processing.
The user can control the frequency of these calls. We set
the frequency to 1 so that this callback should be called ev-
ery time in the branch-and-bound loop. Inside the callback,
we add the valid inequalities that violate the LP solution by
more than a certain amount.

Generally, the valid inequalities help to increase the
relaxation value. However, they also increase the compu-
tational effort required to solve each node. In particular,
adding dense inequalities can significantly slow down the
simplex method. We conducted computational experiments
by varying the density of valid inequalities. We found that
adding only most sparse valid inequality (9) achieved the
best performance. Consequently, we compared the results
of BBF with them. For this experiment, we set the time limit
to 7,200 seconds.
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Table 3 Trick’s formulation vs. the proposed bigram based formulation
2𝑛 #variables #constraints #solved #nodes run time [s] gap(%)

TF BBF TF BBF TF BBF TF BBF TF BBF
4 17(40) 24(59) 0(32) 0(19) 5/5 5/5 1 0 0.00 0.00 0.00 0.00
6 58(96) 88(166) 61(96) 42(58) 5/5 5/5 1 1 0.01 0.01 0.00 0.00
8 119(176) 184(325) 143(192) 101(117) 5/5 5/5 1 1 0.06 0.03 0.00 0.00
10 200(280) 312(536) 255(320) 180(196) 5/5 5/5 1 1 0.26 0.10 0.00 0.00
12 301(408) 472(799) 393(480) 279(295) 5/5 5/5 2 2 0.53 0.28 0.00 0.00
14 422(560) 664(1,114) 560(672) 398(414) 5/5 5/5 9 12 2.52 0.95 0.00 0.00
16 563(736) 888(1,481) 756(896) 537(553) 6/6 6/6 27 17 4.90 2.25 0.00 0.00
18 724(936) 1,144(1,900) 979(1,152) 696(712) 6/6 6/6 224 377 11.34 6.70 0.00 0.00
20 905(1,160) 1,432(2,371) 1,230(1,440) 875(891) 5/5 5/5 632 562 33.65 13.65 0.00 0.00
22 1,106(1,408) 1,752(2,894) 1,509(1,760) 1,074(1,090) 5/5 5/5 1,629 1,460 113.58 40.13 0.00 0.00
24 1,327(1,680) 2,104(3,469) 1,816(2,112) 1,293(1,309) 5/5 5/5 4,399 1,668 426.58 75.56 0.00 0.00
26 1,568(1,976) 2,488(4,096) 2,151(2,496) 1,532(1,548) 4/5 5/5 *13,093 3,156 1,551.12 257.36 1.21 0.00
28 1,829(2,296) 2,904(4,775) 2,515(2,912) 1,793(1,807) 0/5 5/5 *24,102 9,326 3,600.00 1,088.89 6.72 0.00
30 2,110(2,640) 3,352(5,506) 2,906(3,360) 2,072(2,086) 0/5 3/5 *17,665 *14,939 3,600.00 2,670.18 14.35 2.26
32 2,411(3,008) 3,832(6,289) 3,325(3,840) 2,371(2,385) 0/5 1/5 *10,816 *16,147 3,600.00 3,265.70 17.83 5.27
34 2,732(3,400) 4,344(7,124) 3,773(4,352) 2,691(2,704) 0/5 0/5 *6,483 *12,919 3,600.00 3,600.00 30.61 11.27
36 3,073(3,816) 4,888(8,011) 4,249(4,896) 3,031(3,043) 0/5 0/5 *3,930 *10,094 3,600.00 3,600.00 33.62 13.90
38 3,434(4,256) 5,464(8,950) 4,752(5,472) 3,391(3,402) 0/5 0/5 *3,834 *5,873 3,600.00 3,600.00 51.49 23.75
40 3,815(4,720) 6,072(9,941) 5,285(6,080) 3,770(3,781) 0/5 0/5 *3,532 *4,718 3,600.00 3,600.00 65.84 29.40
42 4,216(5,208) 6,712(10,984) 5,843(6,720) 4,169(4,180) 0/5 0/5 *2,498 *5,074 3,600.00 3,600.00 73.48 44.91
44 4,637(5,720) 7,384(12,079) 6,431(7,392) 4,588(4,599) 0/5 0/5 *2,156 *3,476 3,600.00 3,600.00 95.80 57.06
46 5,078(6,256) 8,088(13,226) 7,047(8,096) 5,028(5,038) 0/5 0/5 *1,498 *3,313 3,600.00 3,600.00 101.70 55.68
48 5,539(6,816) 8,824(14,425) 7,690(8,832) 5,487(5,497) 0/5 0/5 *1,156 *2,312 3,600.00 3,600.00 103.34 69.40
50 6,020(7,400) 9,592(15,676) 8,361(9,600) 5,966(5,976) 0/5 0/5 *1,178 *2,112 3,600.00 3,600.00 121.55 79.37

* Underestimated as some instances could not be solved within the time limit.

Table 4 reports the comparison results. The table head-
ers represent the same categories of data as in Table 3. For
instance, “#solved” indicates the number of problems that
were successfully solved out of the given instances. The
tenth and eleventh columns, under the header “root gap(%),”
indicate the average gap at the root node. We have com-
pared the dual bound obtained at the root node by normaliz-
ing the optimal value or known best value. It is defined by
db(𝜏)/𝐵min (𝜏), where db(𝜏) denotes the dual bound at root
node and 𝐵min (𝜏) denotes the optimal value or best known
value. A larger value indicates that we obtained a tighter
lower bound at the root node. In the table, “BBF” corre-
sponds to the results of BBFwithout valid inequalities, while
“BBF-V” represents the results of BBF with valid inequali-
ties.

Table 4 indicates that the valid inequality (9) improves
the result on some instances. For example, when 2𝑛 = 30,
the BBF with valid inequalities solved 24% faster on aver-
age than the BBF without valid inequalities Though “root
gap(%)” is certainly improved when valid inequalities are
added, we can conclude that the effect of the valid inequal-
ities is modest. We guess that this result comes from the
duplication of valid inequalities automatically generated by
the solver and those we generated.

5. Conclusion

In this study, we developed a novel ILP formulation for
the break minimization problem of the (single) round-robin
tournament, which we call the bigram based formulation.
Through computational experiments, we have demonstrated
that our formulation outperforms a well-known existing for-

mulation. The experiments revealed two advantages of BBF;
smaller tree size and increased efficiency in solving LP re-
laxation.

We also presented valid inequalities of this formulation.
We confirmed that their addition further improves the results,
especially for larger instances. By carefully choosing sparse
ones, we achieve better root gaps while avoiding an increase
in the computational effort required to solve each node.

The break minimization problemwe applied is the most
simple one; in practice, there are many constraints. One of
the most common restrictions is an upper bound of consec-
utive home games or away games [25]. It appears as tourna-
ment problem of Danish soccer league [13]. We believe that
our methods hold significant potential even for such practical
problems. Future research will focus on verifying the effec-
tiveness of our approach by imposing practical constraints
on real-world applications.
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Appendix A: Trick’s ILP formulation for BMP

In this appendix, we introduce the ILP formulation proposed
by Trick [8] (TF).
Decision Variables

The variable start𝑡 indicates if team 𝑡 starts at “home”
in the initial time slot. This variable is applicable to each
team 𝑡, which ranges from 1 to 2𝑛. A value of start𝑡 = 1
suggests that team 𝑡 starts at “home” and start𝑡 = 0 starts at
“away.”

The variable to_home𝑡 ,𝑠 indicates the transition of sta-
tus; whether team 𝑡 goes home or not after slot 𝑠. If
to_home𝑡 ,𝑠 = 1, team 𝑡 plays at away in slot 𝑠 and at home
in slot 𝑠 + 1. Similarly, to_away𝑡 ,𝑠 indicates whether team 𝑡
goes away or not after slot 𝑠. If to_away𝑡 ,𝑠 = 1, team 𝑡 plays
at home in slot 𝑠 and at away in slot 𝑠 + 1. The variables
to_home𝑡 ,𝑠 and to_away𝑡 ,𝑠 are defined for (𝑡, 𝑠) ∈ 𝑇 × 𝑆− ,
where we define 𝑆− = 𝑆\{2𝑛−1}. The variables to_home𝑡 ,𝑠
and to_away𝑡 ,𝑠 correspond to 𝑥AH

𝑡 ,𝑠 and 𝑥HA
𝑡 ,𝑠 in bigram based

formulation, respectively.
The variable at_home𝑡 ,𝑠 indicates whether team 𝑡 is

playing at home in time slot 𝑠. A value of 1 for at_home𝑡 ,𝑠
suggests that team 𝑡 plays at home for that slot, and a value
of 0 suggests it plays at away. Based on the definition of the
variables to_home𝑡 ,𝑠 and to_away𝑡 ,𝑠 , the sum of those will
be equal to the variable at_home𝑡 ,𝑠:

at_home𝑡 ,𝑠 = start𝑡 +
𝑠−1∑
𝑠′=1

(to_home𝑡 ,𝑠′ − to_away𝑡 ,𝑠′ )

(∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆).
(A· 1)

Though it is mentioned in [8] that the variable
at_home𝑡 ,𝑠 can be omitted, we decided to define it and im-
pose constraints (A· 1) owing to the improved computational
performance.
0-1 Constraints As all the variables are binary, we have the
following:

start𝑡 (∀𝑡 ∈ 𝑇), at_home𝑡 ,𝑠 ∈ {0, 1} (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆),
to_home𝑡 ,𝑠 , to_away𝑡 ,𝑠 ∈ {0, 1} (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−).

(A· 2)

Home-Away Consistency Constraint This constraint en-
sures that a home-away assignment is consistent with a given
timetable. This can be expressed as follows:

at_home𝑡 ,𝑠 + at_home𝜏 (𝑡 ,𝑠) ,𝑠 = 1 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆).
(A· 3)

Single Status Constraint For every team 𝑡 and slot 𝑠, the

team cannot go both home and away, which is expressed as
follows:

to_home𝑡 ,𝑠 + to_away𝑡 ,𝑠 ≤ 1 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−).
(A· 4)

Status Transition Constraint This constraint ensures that
a team cannot make transition to away unless it is currently
at home. Similarly, a team cannot make transition to home
unless it is currently at away. This constraint is expressed as
follows:

at_home𝑡 ,𝑠 − to_away𝑡 ,𝑠 ≥ 0 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−),
at_home𝑡 ,𝑠 + to_home𝑡 ,𝑠 ≤ 1 (∀(𝑡, 𝑠) ∈ 𝑇 × 𝑆−).

(A· 5)

The number of non-breaks can be expressed by sum
of transition to home and away. Therefore, the number of
breaks can be expressed by subtracting it from the total num-
ber of slot intervals. Accordingly, we have TF for BMP:

TF: minimize 4𝑛2 − 4𝑛

−
∑
𝑡∈𝑇

∑
𝑠∈𝑆−

(to_home𝑡 ,𝑠 + to_away𝑡 ,𝑠)

subject to (A· 1), (A· 2), (A· 3), (A· 4), (A· 5).

Appendix B: Comparision with QUBO formulation
and QUBO solver

The BMP was formulated as quadratic unconstrained bi-
nary optimization problem (QUBO) [17, 26] and hence
can be solved by general mixed-integer nonlinear (MINLP)
solvers. SCIP is one of the solvers which has a capability
to solve MINLP, implementing a spatial branch-and-bound
algorithm based on linear outer approximation. See [27] for
the details. Several solvers specifically designed for QUBO
have also been developed. QuBowl is one of the state-of-
the-art QUBO solvers developed by Rehfeldt, Koch, and Shi-
nano [28]. It converts QUBO problems to MaxCut problems
and solve them using a branch-and-cut method.

We compared our proposed bigram based formulation
with QUBO formulation. For QUBO formulation, we solved
it with two solvers, SCIP 8.0.3 and QuBowl. For this exper-
iment, We set the time limit to 7,200 seconds.

Table A· 1 shows the result. In this table, we compare
the bigram based formulation and QUBO formulation solved
by SCIP and QuBowl, namely “BBF,” “QUBO,” “QuBowl.”

The first column indicates the size of the instances. The
second, third, and fourth columns, labeled “#solved,” show
the number of problems successfully solved out of the total
attempted problems for each formulation. The fifth, sixth,
and seventh columns, under the header “#nodes,” display the
average number of nodes explored in the branch-and-bound
algorithm. The eighth, ninth, and tenth columns, under the
header “run time [s],” indicate the average computational
time (seconds) required to solve the problems. If the solving
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process reaches the time limit, the reported number of nodes
and computational time represent the values at the end of
the interrupted solving. The eleventh, twelfth, and thirteenth
columns, under the header “gap(%),” indicate the average gap
at the end of solving.

As seen in the result, bigram based formulation is
less effective than QUBO formulation nor applying QUBO
solver. However, this formulation needs MINLP solver or
QUBO solver. Thus, our bigram based formulation should
be attractive for those who use ILP solver.
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Table A· 1 Comparison with QUBO formulation and QuBowl
2𝑛 #solved #nodes run time [s] gap (%)

BBF QUBO QuBowl BBF QUBO QuBowl BBF QUBO QuBowl BBF QUBO QuBowl
4 5/5 5/5 5/5 0 1 1 0.00 0.01 0.02 0.00 0.00 0.00
6 5/5 5/5 5/5 1 1 1 0.01 0.01 0.01 0.00 0.00 0.00
8 5/5 5/5 5/5 1 1 1 0.03 0.17 0.01 0.00 0.00 0.00
10 5/5 5/5 5/5 1 1 1 0.11 0.13 0.01 0.00 0.00 0.00
12 5/5 5/5 5/5 2 5 1 0.28 0.40 0.02 0.00 0.00 0.00
14 5/5 5/5 5/5 9 9 1 0.53 0.56 0.04 0.00 0.00 0.00
16 6/6 6/6 6/6 15 31 1 1.89 1.32 0.06 0.00 0.00 0.00
18 6/6 6/6 6/6 325 255 4 6.79 4.29 0.17 0.00 0.00 0.00
20 5/5 5/5 5/5 634 678 2 15.74 11.80 0.26 0.00 0.00 0.00
22 5/5 5/5 5/5 810 1,097 3 32.58 23.81 0.42 0.00 0.00 0.00
24 5/5 5/5 5/5 1,594 2,499 4 80.35 67.41 0.77 0.00 0.00 0.00
26 5/5 5/5 5/5 3,215 5,862 22 268.67 236.52 1.69 0.00 0.00 0.00
28 5/5 5/5 5/5 6,588 18,471 208 888.93 923.25 15.26 0.00 0.00 0.00
30 5/5 5/5 5/5 13,120 35,927 186 2,682.59 2,097.16 18.18 0.00 0.00 0.00
32 2/5 3/5 5/5 *23,971 *71,363 415 5,353.68 4,923.53 46.77 3.09 1.04 0.00
34 0/5 0/5 5/5 *24,831 *75,440 3,595 7,200.00 7,200.00 509.36 9.36 5.98 0.00
36 0/5 0/5 5/5 *20,602 *52,718 6,191 7,200.00 7,200.00 1,156.00 9.88 7.17 0.00
38 0/5 0/5 4/5 *13,298 *37,551 *8,986 7,200.00 7,200.00 2,038.93 19.09 11.00 0.53
40 0/5 0/5 2/5 *7,126 *28,877 *18,027 7,200.00 7,200.00 5,114.12 19.95 14.64 2.17
42 0/5 0/5 1/5 *7,524 *18,405 *16,252 7,200.00 7,200.00 5,924.13 30.06 19.45 3.27
44 0/5 0/5 0/5 *5,867 *16,683 *15,189 7,200.00 7,200.00 7,200.00 53.67 26.00 4.75
46 0/5 0/5 0/5 *6,652 *13,999 *12,679 7,200.00 7,200.00 7,200.00 51.38 24.92 3.31
48 0/5 0/5 0/5 *4,230 *11,422 *10,380 7,200.00 7,200.00 7,200.00 52.29 25.21 3.37
50 0/5 0/5 0/5 *4,145 *9,116 *7,890 7,200.00 7,200.00 7,200.00 69.28 33.43 6.47

* Underestimated as some instances could not be solved within the time limit.
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