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Computational Complexity of Yajisan-Kazusan and Stained Glass∗

Chuzo IWAMOTO†, Member and Ryo TAKAISHI†, Nonmember

SUMMARY Yajisan-Kazusan and Stained Glass are Nikoli’s pencil
puzzles. We study the computational complexity of Yajisan-Kazusan and
Stained Glass puzzles. It is shown that deciding whether a given instance
of each puzzle has a solution is NP-complete.
key words: Yajisan-Kazusan, Stained Glass, pencil puzzle, computational
complexity, NP-complete

1. Introduction

Yajisan-Kazusan is played on a rectangular grid of cells (see
Fig. 1(a)). Some of the cells contain numbers with an ar-
row indicating an orthogonal direction. The purpose of the
puzzle to paint every cell in black or white (see Fig. 1(i))
according to the following rules [1]: (1) The number in a
white cell indicates the number of black cells in the direction
the associated arrow points to. (A black cell may or may not
contain a valid number.) (2) Black cells must not be orthog-
onally adjacent. (3) All white cells must be connected as
part of a single contiguous region.

Figure 1(a) is an initial configuration of a Yajisan-
Kazusan puzzle. From Figs. 1(b)–(i), the reader can un-
derstand basic techniques for finding a solution. (b) Since
the gray cell contains an invalid number, it must be colored
black (see (c)). The three red cells adjacent to the gray cell
must be colored white. If the blue cell is colored black, then
the white cell at the top right corner is isolated. Thus, the
blue cell is also colored white. (c) The gray cell and four red
cells must be colored black and white, respectively. (d) Two
gray cells and five red cells must be colored black and white,
respectively. The blue cell must be colored white so that the
bottom left cell is not isolated. (e) The two gray cells in the
first column must be colored black, and thus the three red
cells and two blue cells must be colored white. Then, the
gray cell in the sixth column is colored black. (f) If the gray
cell and two red cells are colored black and white respec-
tively, then the green cell must be colored black (see (g)).
(g) is an invalid painting of cells, since the red number 1
points to two black cells. Hence, in (f), the gray cell and
two red cells must be colored white and black, respectively
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Fig. 1 (a) Initial configuration of a Yajisan-Kazusan puzzle. (b)–(i) are
the progress from the initial configuration to a solution. (g) is an invalid
painting of cells.

(see (h)). Also, the green cell in (f) is colored white. (h) If
the gray cell and two red cells are colored black and white
respectively, then the red number 1 becomes invalid. (i) is
one of the multiple solutions. (There is another solution such
that the red cell with number 1 in (h) is colored black.)

Stained Glass is played on a rectangular field (see
Fig. 2(a)). The field is partitioned into pieces (see nine
pieces 𝑎, 𝑏, . . . , 𝑖 in Fig. 1(b)). Each piece is separated by
vertical, horizontal, and diagonal line segments, and small
colored circles are placed on some of line segments. (In the
figure, there are two blue circles, two red circles, and three
yellow circles.)

The purpose of the puzzle is to paint every piece in blue
or red (see Fig. 2(f)) according to the following rules [2]:
(1) A blue circle denotes that there are more blue pieces
touching that circle than red pieces. (2) A red circle denotes
that there are more red pieces touching that circle than blue
pieces. (3) A yellow circle denotes that there are an equal
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Fig. 2 (a) Initial configuration of a Stained Glass puzzle. (b)–(f) are the
progress from the initial configuration to a solution.

number of blue and red pieces touching that circle. (In [10],
the original Stained Glass puzzle uses colors black, white,
and gray. In this paper, we use colors blue, red, and yellow
for better visibility.)

Figure 2(a) is an initial configuration of a Stained Glass
puzzle. (b) There is a blue circle which touches two pieces 𝑐
and 𝑓 . Thus, 𝑐 and 𝑓 must be colored blue. (c) Piece 𝑑 must
be colored red, since there is a yellow circle touching two
pieces 𝑐 and 𝑑. (d) Piece 𝑎 must be colored blue, since there
is a blue circle touching pieces 𝑎, 𝑐, and 𝑑. (e) Pieces 𝑔 and
ℎ must be colored red. (f) is one of the multiple solutions.
(There is another solution such that pieces 𝑏, 𝑒, and 𝑖 are
colored red, blue, and red, respectively.)

In this paper, we study the computational complexity
of the decision version of the Yajisan-Kazusan and Stained
Glass puzzles. The instance of the Yajisan-Kazusan puzzle
problem is a rectangular grid of cells, where some of the cells
contain a number with an arrow. The instance of the Stained
Glass puzzle problem is a rectangular field partitioned into
pieces, where a set of 3-colored circles are placed on the
boundaries of pieces. Each problem is to decide whether
there is a solution to the instance.

In Sects. 2 and 3, we will show that the Yajisan-Kazusan
and Stained Glass puzzle problems are NP-complete. It is
clear that the Yajisan-Kazusan puzzle problem belongs to
NP, since the puzzle ends when every cell is painted in black
or white. The Stained Glass puzzle problem also belongs
to NP, since the puzzle ends when every piece is painted in
blue or red.

There have been a lot of papers, which prove the NP-
completeness of Nikoli’s pencil puzzles. In the past few
years, Choco Banana [8], Five Cells and Tilepaint [5], Moon-
or-Sun, Nagareru, and Nurimeizu [6], Nondango [15], and
Toichika [14] were shown to be NP-complete. Those NP-
complete puzzles can be categorized into groups depending
on which representative NP-complete problem they are re-
duced from. The categorization reflects fundamental dif-
ferences in the inherent difficulty of puzzles within each
group. (i) Choco Banana, Five Cells, Nondango, and To-

ichika are reduced from the 3SAT problem, (ii) Moon-or-
Sun, Nagareru, and Nurimeizu are reduced from the Hamil-
tonian cycle problem, and (iii) Tilepaint is reduced from the
3-dimensional matching problem. The current paper demon-
strates that Yajisan-Kazusan and Stained Glass fall into the
first and third groups, respectively. One of the interesting
related works is on zero-knowledge proof (ZKP) protocols.
Recently, ZKP protocols were constructed for Nikoli’s pencil
puzzles: Five Cells [13], Moon-or-Sun [4], Nonogram [12],
Nurimisaki and Kurodoko [11].

2. NP-completeness of Yajisan-Kazusan

In this section, we will show the following theorem.

Theorem 1: The Yajisan-Kazusan puzzle problem is NP-
complete.

We give the definition of the 3-dimensional matching prob-
lem in Sect. 2.1. Then, we prove the NP-completeness of the
Yajisan-Kazusan puzzle in Sect. 2.2.

2.1 3-Dimensional Matching Problem

An instance of the 3-Dimensional Matching problem (3DM)
is a set𝑀 ⊆ 𝑋×𝑌×𝑍 , where 𝑋 ,𝑌 , and 𝑍 are disjoint sets hav-
ing the same number 𝑞 of elements. The 3DM problem asks
whether 𝑀 contains a matching, i.e., a subset 𝑀 ′ ⊆ 𝑀 such
that |𝑀 ′ | = 𝑞 and no two elements of 𝑀 ′ agree in any coor-
dinate. This problem is known to be NP-complete [3]. For
example, 𝑋 = {𝑥1, 𝑥2, 𝑥3}, 𝑌 = {𝑦1, 𝑦2, 𝑦3}, 𝑍 = {𝑧1, 𝑧2, 𝑧3},
𝑀 = {𝑒1, 𝑒2, . . . , 𝑒7}, and

𝑒1 = (𝑥1, 𝑦1, 𝑧1), 𝑒2 = (𝑥1, 𝑦2, 𝑧3), 𝑒3 = (𝑥2, 𝑦2, 𝑧3),
𝑒4 = (𝑥2, 𝑦3, 𝑧1), 𝑒5 = (𝑥3, 𝑦1, 𝑧2), 𝑒6 = (𝑥3, 𝑦2, 𝑧2),
𝑒7 = (𝑥3, 𝑦3, 𝑧2)

provide an instance of 3DM. For this instance, the answer is
“yes,” since there is a matching 𝑀 ′ = {𝑒2, 𝑒4, 𝑒5} ⊆ 𝑀 .

2.2 Transformation from an Instance of 3DM to a Yajisan-
Kazusan Puzzle

We present a polynomial-time transformation from an arbi-
trary instance𝑀 of 3DM to a Yajisan-Kazusan puzzle𝐾 such
that 𝑀 contains a matching if and only if 𝐾 has a solution.

Consider Fig. 3(a). This figure is composed of a top
gadget of the first and second rows and an 𝑒𝑖-gadget of the
third and fourth rows. The 𝑒𝑖-gadget corresponds to 𝑒𝑖 =
(𝑥 𝑗 , 𝑦𝑘 , 𝑧𝑙) ∈ 𝑀 .

In the first row of Fig. 3(a), number 1 with an up-
pointing arrow appears at every other position. In the second
row, number 0 with a down-pointing arrow appears at every
other position from the third through (6𝑞 + 4)th columns. In
the third row, (i) two red cells contain numbers 𝑠 = 3𝑞 − 2
and 𝑡 = 3𝑞 with right-pointing arrows, and (ii) number 3
with an up-pointing arrow appears at the positions indicated
by label 𝑢 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑞 , 𝑦1, 𝑦2, . . . , 𝑦𝑞 , 𝑧1, 𝑧2, . . . , 𝑧𝑞} −
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Fig. 3 In this figure, 𝑠 = 3𝑞 − 2 and 𝑡 = 3𝑞. (a) The set of the first two rows is a top gadget. The
set of the next two rows is an 𝑒𝑖-gadget transformed from 𝑒𝑖 = (𝑥 𝑗 , 𝑦𝑘 , 𝑧𝑙 ) ∈ 𝑀. (b) and (c) are two
possible solutions to (a).
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Fig. 4 (a) Bottom gadget. (b) Solution to this gadget when 𝑚′ = 0.

{𝑥 𝑗 , 𝑦𝑘 , 𝑧𝑙}. In the fourth row, numbers 0 and 1 appear at the
last two cells with left-pointing and right-pointing arrows,
respectively.

In the first and third rows of Fig. 3(a), numbers 1 and 3
with up-pointing arrows are invalid. In the fourth row, num-
ber 1 with a right-pointing arrow is also invalid. Therefore,
they must be colored black (see Figs. 3(b) and 3(c)). Since
the two red cells contains numbers 𝑠 = 3𝑞−2 and 𝑡 = 3𝑞 with
right-pointing arrows, exactly one of them must be colored
black and the other must be colored white. Hence, Figs. 3(b)
and 3(c) are two possible solutions to this gadget (see also
Figs. 5 and 6).

Figure 4(a) is a bottom gadget. Fig. 4(b) is the unique
solution to this gadget when 𝑚′ = 0. (The value 𝑚′ will be
fixed to 𝑚′ = |𝑀 | − 1 = 6 in Figs. 5 and 6.)

Figure 5 is the Yajisan-Kazusan puzzle 𝐾 trans-
formed from the instance 𝑀 = {𝑒1, 𝑒2, . . . , 𝑒7}, where
𝑒1 = (𝑥1, 𝑦1, 𝑧1), 𝑒2 = (𝑥1, 𝑦2, 𝑧3), 𝑒3 = (𝑥2, 𝑦2, 𝑧3),

𝑒4 = (𝑥2, 𝑦3, 𝑧1), 𝑒5 = (𝑥3, 𝑦1, 𝑧2), 𝑒6 = (𝑥3, 𝑦2, 𝑧2), and
𝑒7 = (𝑥3, 𝑦3, 𝑧2). This figure is composed of the top gadget,
followed by 𝑒𝑖-gadgets for all 𝑒𝑖 ∈ 𝑀 , further followed by the
bottom gadget. The green cells of the bottom gadget contain
numbers 𝑚′ = |𝑀 | − 1 = 6. Each 𝑒𝑖-gadget is placed at the
(2𝑖 + 1)th row, in which gray cells contain numbers 2𝑖 + 1
with up-pointing arrows. Thus, those numbers 2𝑖 + 1 are
invalid (see Fig. 6).

Figure 6 is a solution to the puzzle 𝐾 of Fig. 5. In
Lemma 1, we will show that the instance 𝑀 of 3DM has
a matching if and only if the Yajisan-Kazusan puzzle 𝐾
has a solution. From Fig. 6, one can see that there is a
matching 𝑀 ′ = {𝑒2, 𝑒4, 𝑒5} ⊆ 𝑀 .

Lemma 1: The instance 𝑀 of 3DM has a matching if and
only if there exists a solution to the instance 𝐾 of the Yajisan-
Kazusan puzzle.

Proof. (⇒) Suppose that 𝑀 has a matching 𝑀 ′ ⊆ 𝑀 ,
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Fig. 5 Yajisan-Kazusan puzzle 𝐾 transformed from 3DM 𝑀 = {𝑒1, 𝑒2, . . . , 𝑒7}, where 𝑒1 =
(𝑥1, 𝑦1, 𝑧1 ) , 𝑒2 = (𝑥1, 𝑦2, 𝑧3 ) , 𝑒3 = (𝑥2, 𝑦2, 𝑧3 ) , 𝑒4 = (𝑥2, 𝑦3, 𝑧1 ) , 𝑒5 = (𝑥3, 𝑦1, 𝑧2 ) , 𝑒6 =
(𝑥3, 𝑦2, 𝑧2 ) , and 𝑒7 = (𝑥3, 𝑦3, 𝑧2 ) . The green cells of the bottom gadget contain numbers 𝑚′ =
|𝑀 | − 1 = 6.
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Fig. 6 Solution to the Yajisan-Kazusan puzzle 𝐾 of Fig. 5. From this figure, one can see that there is
a matching 𝑀′ = {𝑒2, 𝑒4, 𝑒5} ⊆ 𝑀.

where 𝑀 ⊆ 𝑋 ×𝑌 ×𝑍 . (For example, consider instance 𝑀 =
{𝑒1, 𝑒2, . . . , 𝑒7} and its matching 𝑀 ′ = {𝑒2, 𝑒4, 𝑒5} in the

captions of Figs. 5 and 6, respectively.) For every 𝑢 ∈
𝑋 ∪ 𝑌 ∪ 𝑍 , there exists exactly one edge 𝑒𝑖′ ∈ 𝑀 ′ such that
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𝑒𝑖′ has 𝑢 as one of the three coordinates. (For example,
for the coordinate 𝑥1 ∈ 𝑋 ∪ 𝑌 ∪ 𝑍 , there exists exactly one
edge 𝑒2 = (𝑥1, 𝑦2.𝑧3) ∈ 𝑀 ′ such that 𝑒2 has 𝑥1 as one of its
coordinates.) When 𝑒𝑖′ ∈ 𝑀 ′, cells ®𝑠 and ®𝑡 can be colored
white and black respectively in the 𝑒𝑖′ -row (see cells ®7 and
®9 in the 𝑒2-row of Fig. 6). Thus, the cell corresponding to
coordinate 𝑢 and edge 𝑒𝑖′ is colored white, and the remaining
|𝑀 | − 1 cells corresponding to coordinate 𝑢 and edges 𝑒𝑖 ∈
𝑀−{𝑒𝑖′ } are colored black (see |𝑀 |−1 = 6 black cells in the
𝑥1-column from the 3rd through 16th rows). Therefore, for
each 𝑢 ∈ 𝑋 ∪𝑌 ∪ 𝑍 , there are 𝑚′ = |𝑀 | − 1 black cells in the
𝑢-column from the 3rd through (2|𝑀 | + 2)th rows (see the
red dotted line frame in Fig. 6). Hence, the number 𝑚′ (= 6)
in each green cell indicates the number of black cells in the
direction the associated arrow points to. Thus, there is a
solution to the instance 𝐾 of the Yajisan-Kazusan puzzle.

(⇐) Let 𝐾 be a Yajisan-Kazusan puzzle transformed
from an instance 𝑀 of 3DM (see Fig. 5). Suppose that
there is a solution to 𝐾 (see Fig. 6). Consider an arbitrary
coordinate 𝑢 ∈ 𝑋∪𝑌∪𝑍 (for example, consider 𝑥1 in Fig. 6).
Since the green cell has number𝑚′ (= 6) with an up-pointing
arrow, there exists exactly one edge 𝑒𝑖′ such that the cell in
the 𝑒𝑖′ -row and the 𝑢-column is white (see the white cell in
the 𝑒2-row and the 𝑥1-column). This implies that cells ®𝑠 and
®𝑡 are colored white and black respectively in the 𝑒𝑖′ -row (see
®7 and ®9 in the 𝑒2-row). Therefore, the exists a matching 𝑀 ′

such that 𝑒𝑖′ ∈ 𝑀 ′ if and only if cells ®𝑠 and ®𝑡 are colored
white and black respectively in the 𝑒𝑖′ -row (see three rows
corresponding to edges in 𝑀 ′ = {𝑒2, 𝑒4, 𝑒5}). □

3. NP-completeness of Stained Glass

In this section, we will show the following theorem.

Theorem 2: The Stained Glass puzzle problem is NP-
complete.

We give the definition of the positive planar 1-in-3-SAT
problem in Sect. 3.1. Then, we prove the NP-completeness
of the Stained Glass puzzle in Sect. 3.2.

3.1 Positive Planar 1-in-3-SAT

Let 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a set of Boolean variables.
Boolean variables take on values 0 (false) and 1 (true). A
clause over𝑈 is a set of variables over𝑈, such as {𝑥1, 𝑥2, 𝑥3}.
A clause is satisfied by a truth assignment if and only if ex-
actly one of its members is true under that assignment.

An instance of positive planar 1-in-3-SAT is a collection
𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} of clauses over𝑈 such that (i) |𝑐 𝑗 | = 3
for each 𝑐 𝑗 ∈ 𝐶 and (ii) the graph 𝐺 = (𝑉, 𝐸), defined by
𝑉 = 𝑈 ∪𝐶 and 𝐸 = { (𝑥𝑖 , 𝑐 𝑗 ) | 𝑥𝑖 ∈ 𝑐 𝑗 ∈ 𝐶 }, is planar. The
positive planar 1-in-3-SAT problem asks whether there exists
some truth assignment for 𝑈 that simultaneously satisfies
all the clauses in 𝐶. This problem is known to be NP-
complete [9].

For example, 𝑈 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}, 𝐶 = {𝑐1, 𝑐2, 𝑐3},
and 𝑐1 = {𝑥1, 𝑥2, 𝑥5}, 𝑐2 = {𝑥1, 𝑥3, 𝑥4}, and 𝑐3 = {𝑥2, 𝑥3, 𝑥5}

provide an instance of positive planar 1-in-3-SAT. For this
instance, the answer is “yes,” since there is a truth assignment
(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 1, 0, 1, 0) satisfying all clauses.

3.2 Transformation from an Instance of Positive Planar 1-
in-3-SAT to a Stained Glass Puzzle

We present a polynomial-time transformation from an arbi-
trary instance 𝐶 of positive planar 1-in-3-SAT to a Stained
Glass puzzle 𝑆 such that 𝐶 is satisfiable if and only if 𝑆 has
a solution.

Variable 𝑥𝑖 is transformed into a variable gadget as
shown in Fig. 7(a). This gadget is a sequence of an even
number of square pieces connected via yellow circles. In
Fig. 7(b), if pieces 𝑎 and 𝑏 are colored red and blue respec-
tively, then 𝑧 will be colored blue. This corresponds to the
assignment 𝑥𝑖 = 1. In Fig. 7(c), if 𝑎 and 𝑏 are colored blue
and red respectively, then 𝑧 is colored red. This corresponds
to the assignment 𝑥𝑖 = 0.

Figure 8(a) is a clause gadget for 𝑐 𝑗 = {𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 }.
In this gadget, both of pieces 𝑝 and 𝑞 must be colored
blue (see Fig. 8(b,c,d)), since there is a blue circle touch-
ing them. In Fig. 8(a), there is a yellow circle touching four
pieces 𝑧1, 𝑧2, 𝑧3, and 𝑝; this yellow circle plays a key role in
the 1-in-3 property. Note that each of the three pieces 𝑧1,
𝑧2, and 𝑧3 corresponds to the rightmost piece 𝑧 in Fig. 7.
One can see that the gadget of Fig. 8(a) has a solution if and
only if exactly one of 𝑥𝑖1 , 𝑥𝑖2 , and 𝑥𝑖3 is 1 (see Fig. 8(b,c,d)).
(Figure 9 will be explained later.)

Figure 10 is a Stained Glass puzzle 𝑆 transformed
from positive planar 1-in-3-SAT 𝐶 = {𝑐1, 𝑐2, 𝑐3}, where
𝑐1 = {𝑥1, 𝑥2, 𝑥5}, 𝑐2 = {𝑥1, 𝑥3, 𝑥4}, and 𝑐3 = {𝑥2, 𝑥3, 𝑥5}. In
Fig. 10, when we connect a variable gadget with a clause gad-
get, we sometimes need a connection gadget of odd length.
In such a case, we use a gadget given in Fig. 9. In this gadget,
two sets of pieces {𝑠, 𝑡} and {𝑢, 𝑣} are always colored blue
and red, respectively (see Fig. 9(b,c)). If piece 𝑎 is colored
red (resp. blue), then piece 𝑧 will be colored blue (resp. red).
(In Fig. 10, we used three such connection gadgets between
𝑥3 and 𝑐3; 𝑥4 and 𝑐2; and 𝑥5 and 𝑐1.)

In Lemma 2, we will show that positive planar 1-in-3-
SAT 𝐶 is satisfiable if and only if there exists a solution to
Stained Glass puzzle 𝑆. From the solution of puzzle 𝑆, one
can see that the assignment (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 1, 0, 1, 0)
satisfies all clauses of 𝐶. In the figure, there are three large
pieces 𝑓1, 𝑓2, and 𝑓3. Those pieces can be colored either
blue or red with no restriction.

Lemma 2: The instance 𝐶 of positive planar 1-in-3-SAT
is satisfiable if and only if there exists a solution to the
instance 𝑆 of the Stained Glass puzzle.

Proof. (⇒) Suppose that instance𝐶 is satisfiable, i.e.,
there is a truth assignment to variables 𝑥1, 𝑥2, . . . , 𝑥𝑛 satis-
fying all clauses of 𝐶. For such an assignment, exactly one
of the three variables 𝑥𝑖1 , 𝑥𝑖2 , and 𝑥𝑖3 has value 1 for every
clause 𝑐 𝑗 = {𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 } ∈ 𝐶. This implies that every clause
gadget has a solution (see Fig. 8), since (i) one of the three
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x  = 1 i x  = 0 i a b c d xi 

(b) (c)(a)

a y z b 

even

c d y z a b c d y z 

Fig. 7 (a) Variable gadget for 𝑥𝑖 . (b) Solution corresponding to the assignment 𝑥𝑖 = 1. (c) Solution
corresponding to 𝑥𝑖 = 0.
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Fig. 8 (a) Clause gadget for 𝑐 𝑗 = {𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 }. (b,c,d) The gadget has a solution when exactly one
of 𝑥𝑖1 , 𝑥𝑖2 , and 𝑥𝑖3 is 1.
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Fig. 9 (a) Connection gadget of odd length. (b) and (c) are two possible solutions corresponding to
assignments 𝑥𝑖 = 1 and 𝑥𝑖 = 0, respectively.

pieces 𝑧1, 𝑧2, and 𝑧3 is colored blue and (ii) two of them are
colored red. As shown in Figs. 7 and 9, variable gadgets and
connection gadgets have always solutions. Therefore, if 𝐶
is satisfiable, then there is a solution to the instance 𝑆 of the
Stained Glass puzzle.

(⇐) Let 𝑆 be a Stained Glass puzzle transformed from
an instance 𝐶 of positive planar 1-in-3-SAT. Suppose that
there is a solution to 𝑆 (see Fig. 10). In each clause gad-
get 𝑐 𝑗 = {𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 } ∈ 𝐶, (i) one of the three pieces 𝑧1,
𝑧2, and 𝑧3 is colored blue and (ii) two of them are col-
ored red. This implies that there is a truth assignment
to (𝑥1, 𝑥2, . . . , 𝑥𝑛) satisfying every clause 𝑐 𝑗 ∈ 𝐶 such that

𝑥𝑖 = 0 if and only if pieces 𝑎 and 𝑏 of the variable gadget 𝑥𝑖
are colored blue and red respectively for all 𝑖 ∈ {1, 2, . . . , 𝑛}.

□
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