
DOI:10.1587/transinf.2024FCP0005

Publicized:2024/05/31

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

1

PAPER

Space-efficient FPT Algorithms for Degeneracy

Naohito MATSUMOTO†a), Nonmember, Kazuhiro KURITA††b), Member, and Masashi KIYOMI†c), Nonmember

SUMMARY The degeneracy of a graph � is defined as the smallest

value : such that every subgraph of � has a vertex with a degree of at

most :. Given a graph �, its degeneracy can be easily calculated provided

sufficient memory is available. In this paper, we focus on scenarios where

only o(=) bits of additional read-write memory are available, apart from

the input stored in read-only memory. Within this context, we introduce two

FPT algorithms for degeneracy, parameterized by neighborhood diversity

and the cluster vertex deletion number.

key words: space-efficient algorithm, degeneracy, neighborhood diversity,

cluster vertex deletion

1. Introduction

Graphs are mathematical models for representing various

data, such as road networks, chemical compound structures,

and social networks. These real-world graphs are often

sparse, meaning that they typically have relatively few edges

compared to the square of the number of vertices. Among

the various parameters for sparsity, degeneracy is one of the

typical parameters. A graph � is :-degenerate iff every

induced subgraph of � has vertices with degrees at most

: [1]. Furthermore, the minimum integer that satisfies the

aforementioned condition is defined as the degeneracy of �.

The degeneracy is also an interesting parameter from a prac-

tical point of view since real-world graphs often have small

degeneracy [2], [3].

A classical task in network analysis is the extraction

of dense subgraphs. There are various definitions of dense

subgraphs, such as pseudo-clique, :-plex, and :-club [4].

One of the most fundamental problems in dense subgraph

extraction is the enumeration of maximal cliques. There are

theoretically, and practically efficient algorithms based on

various approaches [2], [5]–[7]. Among these algorithms,

a maximal clique enumeration algorithm using degeneracy

has a good theoretical and practical performance [2], [3],

[5]. Besides maximal clique enumeration, computing de-

generacy is essential since computing degeneracy is closely

related to computing the core decomposition. This decom-

position is used for network community discovery, dense

subgraph discovery, etc. [4], [8], [9].

It is known that the core decomposition and computa-

†The author is with the Seikei University, Tokyo, Japan
††The author is with the Nagoya University, Nagoya, Japan
a) E-mail: dm236211@cc.seikei.ac.jp
b) E-mail: kurita@i.nagoya-u.ac.jp
c) E-mail: kiyomi@st.seikei.ac.jp

tion of the degeneracy can be done in O(= + <) time [10],

see also Algorithm 1. In some practical fields, the computa-

tional cost is not sufficient even for linear time algorithms for

the number of edges since many real-world graphs are huge.

From this motivation, there are approximation algorithms

that run in sublinear time [11], [12]. The computation of

degeneracy on huge graphs is of interest not only to improve

computation time but also to improve working space. Since

many real-world graphs are too large to store in memory,

algorithms have been proposed to compute degeneracy in a

small working space [13]–[15]. From a theoretical point of

view, a lower bound of the space complexity is known for

computing the degeneracy in the streaming setting [16].

While a linear-time algorithm for degeneracy is known,

efficient algorithms in various settings have been studied. In

this paper, we focus on the space complexity for computing

degeneracy. Before describing our results, we mention the

results of Elberfeld et al [17]. Elberfeld et al. show a

logarithmic space version of Courcelle’s theorem. Whether

the degeneracy of a graph is at most : can be described by an

MSO formula if : is a constant. Moreover, the degeneracy

of � is at most the treewidth of �. Therefore, for graphs

with bounded treewidth, the degeneracy can be computed in

logarithmic space using a meta-theorem in [17].

In this paper, we give FPT-time and sublinear-space al-

gorithms parameterized by the cluster vertex deletion num-

ber and the neighborhood diversity. These parameters are

not comparable to treewidth and can be small even for dense

graphs such as complete graphs. See Fig. 1 for the relation-

ship to treewidth.

Our proposed algorithms are based on the peeling algo-

rithm in [10]. The bottleneck is memorizing which vertices

are deleted. Therefore, it is not easy to implement this peel-

ing algorithm for general graphs with less than = bits. To

overcome this difficulty, we use the decomposition of graphs

based on the cluster vertex deletion and the neighborhood

diversity. The neighborhood diversity nd(�) is defined by

the number of neighborhood classes in a graph. Intuitively,

when running the peeling algorithm, if one vertex of a class

is deleted, then all vertices of that class can be deleted. If

we only memorize which class is deleted, we use just nd(�)

bits. Based on this idea, we obtain an O(nd(�) · =4)-time

algorithm for degeneracy with O max {nd(�), log =}) bits.

A graph with the cluster vertex deletion number cd(�)

becomes a cluster graph by deleting cd(�) vertices. Let �

be a graph and * be a set of vertices such that � [+ \ *]

is a cluster graph. Our proposed algorithm memorizes only

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

the deleted vertices in *. A key observation is that it is

possible to determine which vertices in + * are deleted if

we know the deleted vertices in *. Therefore, we only need

to memorize which vertices in * are deleted to compute the

next vertex to be deleted. This observation gives us an FPT

algorithm for degeneracy with Ocd(�) · log =) bits.

Clique Width

Degeneracy

Tree Width

Twin Cover

Vertex Cover

Neighborhood Diversity

Modular Width
Cluster Vertex Deletion

Fig. 1 The relation between Vertex Cover, Tree Width, Neighborhood

Diversity, Modular Width, Twin Cover Number, Cluster Vertex Deletion

Number, Clique Width and Degeneracy. � → � denotes that there is a

function 5 such that 5 (�(�)) ≤ �(�) for all graphs.

2. Preliminaries

This paper considers only simple, undirected graphs. A

graph � = (+ (�), � (�)) is defined as a pair consisting of

a set of vertices + (�) = {{1, {2, . . . , {=} and a set of edges

� (�) ⊆ + (�) ×+ (�). Here, = represents the size of+ (�).

The graph is provided as an array of adjacency lists for each

vertex.

For any { ∈ + (�), #� ({) = {D ∈ + (�) | {D, {} ∈

� (�)} denotes the set of vertices adjacent to {. The degree

3� ({) = |#� ({) | is the number of vertices adjacent to {.

When there is no risk of confusion, the subscript � is omit-

ted. � [(] denotes the subgraph of � induced by (⊆ + (�).

For any integer : > 0, %: is a path graph whose number of

vertices is : . For any graph �, the class of �-free graphs

consists of graphs � such that no vertex subset of � induces

�. A cluster graph is a graph that is a disjoint union of

complete graphs (i.e. %3-free graph). Two vertices D and {

are twins if they satisfy #� ({) \ {D} = #� (D) \ {{}.

Lemma 1. The relation “being twins” is an equivalence

relation on the set of vertices + (�).

Proof. The relation is evidently reflexive (since { and { are

twins), symmetric (if D and { are twins, then { and D are

twins as well), and transitive (if D and { are twins, and { and

| are twins, then D and | are also twins).

�

If all the induced subgraphs of graph � have at least

one vertex whose degree is less than or equal to : , � is

:-degenerate graph. The degeneracy of � is defined as

min{: | � is :-degenerate graph}. The degeneracy of� can

be calculated using the algorithm of removing the current

minmum degree vertex repeatedly, shown in Algorithm 1,

with O=) space [10]. Note that we only have to memo-

rize which vertices are deleted in |+ (�) | bits other than the

number : in order to execute the algorithm.

Algorithm 1 An algorithm for the degeneracy of � with

O(=) space

procedure: Degeneracy(G)

Output: the degeneracy of �

1: : ← 0

2: while � is not %1 do

3: {min ← arg min{3� ({) | { ∈ + (�) }

4: : ← max{3� ({min) , :}

5: Delete {min from current graph

6: return :

We explain two parameters used in this paper, the

neighborhood diversity and the cluster vertex deletion num-

ber. The neighborhood decomposition is classifying vertices

based on their adjacency. The neighborhood diversity is the

minimum number of classes and any tow vertices in a class

can be considered the similar vertex.

Definition 1. The neighborhood decomposition of a graph

� is a partition C = {�1, �2, . . . , �|} of the vertex set

+ (�) such that all the vertices in �8 are twins. Each �8

is referred as a neighborhood class, and | denotes the size

of the decomposition. The neighborhood diversity nd(�) is

defined as the size of minimum neighborhood decomposition

(i.e. the minimum value of |).

By Lemma 1, since all the vertices in�8 are twins, each

�8 forms either a clique or a set of independent vertices.

When there is no risk of confusion, we represent nd instead

of nd(�).

Next, we explain a cluster vertex deletion set and the

cluster vertex deletion number.

Definition 2. For a vertex set - ⊆ + (�), - is a cluster

vertex deletion set of the graph � if a graph � [+ (�) \ -] is

a cluster graph. �� (�) denotes the minimum cluster vertex

deletion set of �, and the cluster vertex deletion number of

� is |�� (�) |, denoted by cd(�). When there is no risk of

confusion, we represent cd instead of cd(�).

Moreover, we can show the following fact, which is

useful for searching a cluster vertex deletion set of �.

Observation 1. Let - be a cluster vertex deletion set of �,

and {{1, {2, {3} induces %3 on �. At least one of the vertices

{1, {2, {3 is included in - .

Proof. If none of the vertices inducing %3 on � belong to

a cluster deletion - , it contradicts the fact that they form a

clique. �

3. Degeneracy by Neighborhood Diversity

In this section, we introduce a space-efficient FPT algorithm

MATSUMOTO et al.: SPACE-EFFICIENT FPT ALGORITHMS FOR DEGENERACY

3

for degeneracy parameterized by the neighborhood diversity

nd.

3.1 Neighborhood representative

Firstly, we introduce a notion called neighborhood represen-

tative.

Definition 3. The neighborhood representative, denoted as

A8 , in a neighborhood class �8 is defined as the vertex with

the smallest index within �8 .

For example, if �8 = {{3, {5, {7, {8}, the neighborhood

representative A8 of �8 is {3.

Lemma 2. A vertex {? ∈ + is a neighborhood representative

if and only if none of the vertices {1, {2, . . . , {?−1 is a twin of

{? .

Proof. We need to establish the following two statements for

Lemma 2.

Let {? ∈ + , belong to the neighborhood class �. If

none of the vertices {1, {2, . . . , {?−1 ∈ + is a twin of {? , each

of those vertices does not belong to the neighborhood class

�. Therefore, the index ? is the smallest index within the

neighborhood class �.

When a vertex {? ∈ + is the neighborhood representa-

tive in the neighborhood class �, the index ? is the smallest

index in �. This means that none of {1, {2, . . . , {?−1 are

included in the neighborhood class �. Therefore, none of

these vertices is a twin of {? . �

We present Algorithm 2, which checks whether a given

vertex {? ∈ + is the neighborhood representative. The cor-

rectness of the algorithm directly follows from Lemma 2. To

determine whether a vertex { ∈ + is one of the neighborhood

representatives of �, we check if any two vertices, D and {,

are twins when D has an index smaller than {. For each D,

this check can be done by checking if every neighbor of D is

adjacent to { and every neighbor of { is adjacent to { in O(=2)

time and O(log =) space. Therefore, the time complexity of

all checks together is O(=3), and the space complexity is

O(log =).

Algorithm 2 An algorithm for checking whether vertex {?
is neighborhood representative

procedure: NeighborhoodRep(�, {?)

Output: “Yes” if {? is the representative, “No” otherwise

1: 9 ← 1

2: while 9 < ? do

3: if #� ({?) \ {{ 9 } = #� ({ 9) \ {{? } then

4: return No

5: 9 ← 9 + 1

6: return Yes

We can easily calculate the neighborhood diversity of

a graph � using Algorithm 3. It counts the number of

neighborhood representatives in the given graph � instead

of keeping track of the neighborhood class for each vertex.

This is correct, as each neighborhood class has exactly one

neighborhood representative and the total count of neigh-

borhood representatives in � is equal to the neighborhood

diversity of�. The time complexity of Algorithm 3 is O(=4),

and the space complexity is O(log =), since Algorithm 3 calls

Algorithm 2 O(=) times. Therefore, we have the following

Lemma.

Algorithm 3 An algorithm for the neighborhood diversity

of �
procedure: NeighborhoodDiversity(�)

Output: Neighborhood diversity of �

1: =3 ← 0;

2: for { ∈ + (�) do

3: if NeighborhoodRep(�, {) = Yes then

4: =3 ← =3 + 1;

5: return =3

Lemma 3. There is an algorithm for the neighborhood di-

versity whose space complexity is O(log =) and the time

complexity is O(=4).

3.2 Calculate Degeneracy by Neighborhood Representa-

tive

We present an FPT algorithm, Algorithm 4, for calculating

the degeneracy of a given graph parameterized by nd. This

algorithm keeps track of the deleted neighborhood classes

rather than individual deleted vertices, as the vertices within

the same neighborhood class have the same neighbors except

for themselves, and therefore, if one vertex can be deleted,

the other vertices in the same class can also be deleted. The

space complexity is evidently O(max{nd, log =}) bits.

We only memorize which neighborhood classes are

deleted in nd bits. So, we need to determine to which neigh-

borhood class { ∈ + (�) belongs in order to know if { is

deleted. This can be achieved by the following:

• Find the representative of the neighborhood class to

which { belongs by comparing neighbors with the ver-

tices whose indexes are smaller than that of {. We

denote the index of the representative by ;. This pro-

cess takes O(=3) time due to Algorithm 2. (Instead

of returning ”No”, we can return the neighhborhood

representative of the class to which {? belongs.)

• For each 8 = 1, . . . , ; − 1, check if {8 is a representative

with Algorithm 2, and count the number C of neighbor-

hood classes whose representative’s indexes are smaller

than ;. Then, { belongs to the (C + 1)th neighborhood

class. This calculation takes O(=4) time.

Thus, we can determine to which neighborhood class { be-

longs, and we can also determine if a vertex { is deleted, in

O(=4) time and O(max{nd, log =}) space.

We consider the time complexity of Algorithm 4. First,

we run Algorithm 3 in O(=4) time. Then, the while statement

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

is executed nd times. In each loop, we calculate Amin. This

can be achieved by the following:

• For 8 = 1, . . . , =, check if {8 is a representative by Algo-

rithm 2 in O(=3) time.

• For each 8 such that {8 is a representative, calculate 3 ({8)

in O(=4) time.

3 ({8) can be calculated by checking if each neighbor of {8 is

deleted. This check for each adjacent vertex D can be done by

calculating the class to which D belongs in O(=4) time with

the way described above. Thus, the whole time complexity

of Algorithm 4 is O(=4 +nd(=3 += ·=4)) = O(nd ·=5). Thus,

we have the following theorem.

Theorem 1. There is an algorithm for the degeneracy whose

space complexity is O(max{nd, log =}) and the time com-

plexity is O(nd · =5), where nd is the neighborhood diversity

of the input graph.

Algorithm 4 An algorithm for the degeneracy of �

procedure: DegeneracyByNeighborhoodRep(�)

Output: the degeneracy of �

1: 2 ← NeighborhoodDiversity(�)

2: : ← 0

3: while 2 > 0 do

4: Amin ← arg min {3 (A) | A is non-deleted neighborhood representative}

.

5: if 3 (Amin) > : then

6: : ← 3 (Amin)

7: Delete the neighborhood class that has the vertex Amin. ⊲ Only

memorize which classes are deleted

8: 2 ← 2 − 1

9: return :.

We note that there is also an algorithm for degeneracy

whose space complexity is O(nd log =) and the time com-

plexity is O(nd2 · =4), since storing all neighborhood repre-

sentatives using O(nd log =) bits of space, we can compute

in O(nd · =2) time to which neighborhood class some vertex

belongs.

4. Degeneracy by Cluster Vertex Deletion Set

In this section, we present a space-efficient FPT algorithm

for degeneracy parameterized by the cluster vertex deletion

number cd.

4.1 Calculate the Cluster Vertex Deletion Set

Algorithm 5 presents an FPT algorithm for finding a cluster

vertex deletion set of size at most |, if it exists in �. We can

easily obtain cluster vertex deletion number cd by executing

the algorithm for| = 1, 2, ... to find the minimum| such that

there is a cluster vertex deletion set of size | (Algorithm 6).

Algorithm 5 An algorithm for the cluster vertex deletion set

of size at most | on a graph � with O(| log =)bits

procedure: ClusterVertexDeletion(�, |, � ← ∅)

Output: a cluster vertex deletion of size at most | if it exists, “No” other-

wise

1: if | = 0 then

2: if all the vertices except for the vertices in � form cliques then

3: return �

4: else

5: return ”No”

6: Let 0, 1, 2 ∈ + (�) \� be vertices which induce %3 in �.

7: if there are no such vertices then

8: return �

9: for { ∈ {0, 1, 2} do

10: � ← ClusterVertexDeletion(�, | − 1, � ∪ {{})

11: if � ≠ ”No” then

12: return � ∪ {{}

13: return ”No”

Algorithm 6 An algorithm for the cluster vertex deletion

number of a graph �

procedure: ClusterVertexDeletionNumber(�)

Output: a cluster vertex deletion number of �

1: |← 1

2: while ClusterVertexDeletion(�, |) ≠ Yes do

3: |← | + 1

4: return |

By Observation 1, at least one of the three vertices

that induce a %3 must belong to a cluster vertex deletion,

and vertices not belonging to it form cliques. Therefore,

if � is not yet a cluster vertex deletion at the execution of

Algorithm 5, there must be three vertices that induce a %3,

and at least one of them must be added to�. This guarantees

the correctness of Algorithm 5.

We now consider the space complexity of Algorithm 5.

We have to memorize � in O(| log =) bits, since |� | ≤ |.

To implement the recursion, we have to be able to restore

the state before the recursive call when returned from recur-

sions. Therefore, we need to memorize what we add to �

in O(log =) bits. Since the depth of the recursion is sup-

pressed by |, we can achieve the recursion with additional

O(| log =) bits. Note that we can determine the return ad-

dress of the code when returning from the recursion by the

information which of three vertices are added to �. Thus,

the total space complexity of Algorithm 5 is O(| log =).

Next we consider the time complexity of Algorithm 5.

We can find three vertices that induce a %3 by checking for

every triple of vertices whether they induce a %3. The check

for each triple can be done in O(=) time by checking each

pair in the triple are adjacent, but we also need to check if the

vertices are in �. Checking if a vertex { is in � can be done

by linear search in �. Since the size of � is O(|), this takes

O(|) = O(=) time. Together with the fact that the number

of triples of vertices is O(=3), whole time complexity to find

MATSUMOTO et al.: SPACE-EFFICIENT FPT ALGORITHMS FOR DEGENERACY

5

three vertices not in� that induce a %3 is O(=4). The vertices

except for � form cliques if and only if there are no three

vertices that induce %3 since Observation 1. Therefore, the

work in every node of the recursion tree takes O(=4) time.

The number of the recursions is O(3|), since the depth of

the recursion is O(|). Thus, the total time complexity of the

Algorithm 5 is O(3|=4).

From the above, the following lemma is obtained.

Lemma 4. There is an algorithm for cluster vertex dele-

tion whose space complexity is O(cd · log =) and the time

complexity is O(3cdcd · =4), where cd is the cluster vertex

deletion number of the input graph.

4.2 Calculate Degeneracy by Cluster Vertex Deletion

Algorithm 7 presents a space-efficient FPT algorithm for

degeneracy parameterized by cluster vertex deletion number

cd. This algorithm is similar to Matula and Beck’s algorithm

[10].

Algorithm 7 An algorithm for the degeneracy of � param-

eterized by cluster vertex deletion number cd

procedure: DegeneracyByClusterDeletion(�)

Output: the degeneracy of �

1: |← ClusterVertexDeletionNumber(�)

2: � ← ClusterVertexDeletion(�, |)

3: ; ← | ⊲ the number of undeleted vertices in �

4: : ← 0

5: while ; > 0 do ⊲ i.e. there exists an undeleted vertex in �

6: A ← arg min {3 ({) | { ∈ + (�) }

7: if 3 (A) > : then

8: : ← 3 (A)

9: if A ∈ � then

10: ; ← ; − 1

11: Delete A form current graph.⊲ Only memorize which vertices in �

are deleted

12: return max {:, max {3 ({) | { is remaining vertex of �}}

In Algorithm 7, we only memorize the cluster vertex

deletion � in O(cd log =) bits, and which vertices in � are

deleted in O(cd) bits. First we show that we can calculate

the degree of every vertex.

Lemma 5. In Algorithm 7, we can calculate 3 ({) for every

vertex { provided we have every vertex of � in memory and

we know whether each vertex in � is deleted. The time

complexity is O(cd · =4).

Proof. To calculate the degree of {, all we have to do is

subtracting the number of vertices which are adjacent to

{ in the input graph and have been deleted, from 3� ({).

Therefore, we contemplate calculating the number of vertices

which are adjacent to { and have been deleted.

First, we focus on a vertex { ∈ + (�) that does not

belong to �. All vertices in #� ({) are categorized into

those that belong to � and those that do not. Since we have

a list of vertices in � and we memorise if each vertex in � is

deleted, we can check whether a vertex D is in� and whether

it is deleted if it is in �, in O(cd) time. Thus, the number of

{’s neighbors in � that have been deleted can be calculated

in O(cd =) time. We denote this number as #�� ({).

Let D1, D2, . . . , D; ∈ #� ({) be {’s neighbors in the in-

put graph � that do not belong to �, arranged in ascending

order of 3� (D8) − #�� (D8), i.e. sorted by the current de-

grees. Note that, according to Definition 2, {D1, . . . , D;}∪{{}

forms a clique. Determining if any of {’s neighbors is in

{D1, . . . , D;} takes O(cd) time since we only need to check

whether it does not belong to �.

If there are vertices in {D8+1, . . . , D;} that are deleted,

D8 is also deleted, since D1, . . . , D; are sorted by the

current degrees. We denote the maximum 8 such that

∀ 9≤8{3� (D 9) − #�� (D 9) − (9 − 1) ≤ :} as 8max. Then

8max vertices in {D1, . . . , D<} have been deleted. Therefore,

if we can calculate 8max, we can calculate the current degree

of {. To calculate 8max, we use the algorithm below.

Algorithm 8 An algorithm for calculating 8max

procedure: CalculateImax(�, {, :, �)

Output: 8max

1: =D< 34; 5 ← 0

2: while True do

3: =D< 34; ← 0

4: for D ∈ #� ({) \� do

5: if 3� (D) − #�� (D) − =D< 34; 5 ≤ : then

6: =D< 34; ← =D< 34; + 1

7: if =D< 34; 5 = =D< 34; then

8: return =D< 34;

9: =D< 34; 5 ← =D< 34;

Assume that we know 5 vertices in #� ({) \� have been

deleted. Then, vertex D in #� ({) \ � satisfying

3� (D) − #�� (D) − 5 ≤ :

is either has already deleted, or can be deleted. Therefore,

in Algorithm 8, we can calculate the number of vertices in

#� ({) \� that can be deleted, that is, we set the initial num-

ber of deleted vertices (i.e. =D< 34; 5) to 0, we compute

=D< 34; iteratively. ∀ 9≤8max+1{3� (D 9) − #�� (D 9) − (9 −

1) ≤ :} is not true by the definition of 8max. That means the

number of vertices which can be deleted does not increase

from 8max to 8max + 1. Thus, 8max is equal to =D< 34; when

Algorithm 8 terminates.

We analyze the time complexity of Algorithm 8. From

the observation above, calculating #�� (D) requires O(cd ·

=) time. When the algorithm has the largest repeat loop, for

every step, there is =D< 34; = =D< 34; 5 +1 and all vertices

can be deleted. Thus, calculating#�� (D) is executed O(=2)

time. The total time complexity of calculate 3 ({) is thus

O(cd · =3) time.

Now we consider the time complexity of calculating

3 ({). Since 3 ({) = 3� ({)−#�� ({)−8max, we can calculate

3 ({) in O(cd · =3) time.

Next we consider the case that { ∈ �. In this case,

3 ({) = 31({) + 32({) holds, where 31({) is the degree in �,

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

and 32({) is the number of undeleted neighbors of { not in

�. We can easily calculate 31({) in O(cd · =) time, since

we know which vertices are deleted. To calculate 32({), we

calculate 3 (D) in O(cd · =3) time with the above method,

for each neighbor of { in the input graph, and check if it is

already deleted. This takes O(cd · =4) time. Therefore, we

can calculate 31 ({) + 32({) in O(cd ·=+cd ·=4) = O(cd ·=4)

time. �

Finally, we consider the time complexity of Algo-

rithm 7. It takes O(3cdcd =4) time for calculating a clus-

ter vertex deletion set of size cd. In the “while loop” we

need to calculate the degree of each vertex. This takes

O(= ·cd ·=3+| ·cd ·=4) = O(cd2 ·=4) time. The “while loop”

is executed O(cd) times. Thus, the whole time complexity

of Algorithm 7 is O(3cdcd · =4 + cd3 · =4). Thus, we have

the theorem below.

Theorem 2. There is an algorithm for the degeneracy whose

space complexity is O(cd · log =) and the time complexity is

O(3cdcd ·=4), where cd is the cluster vertex deletion number

of the input graph.

5. Concluding Remarks

We showed two space-efficient FPT-algorithms, one of which

is parameterized by neighborhood diversity, and the other is

parameterized by cluster vertex deletion number. Whether

there is a polynomial time algorithm for degeneracy whose

space complexity is o(=) bits is an interesting open problem.

Acknowledgments

This work was partially supported by JSPS Kakenhi Grant

Numbers JP21K17812, JP22H03549, JST ACT-X Grant

Number JPMJAX2105.

References

[1] D.R. Lick and A.T. White, “k-degenerate graphs,” Canadian Journal

of Mathematics, vol.22, no.5, p.1082–1096, 1970.

[2] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques in

large sparse real-world graphs,” ACM J. Exp. Algorithmics, vol.18,

nov 2013.

[3] A. Conte, T. De Matteis, D. De Sensi, R. Grossi, A. Marino, and

L. Versari, “D2k: Scalable community detection in massive net-

works via small-diameter k-plexes,” Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, KDD ’18, New York, NY, USA, p.1272–1281, Association

for Computing Machinery, 2018.

[4] C.C. Aggarwal and H. Wang, eds., Managing and mining graph data,

Springer, 2010.

[5] A. Conte, R. Grossi, A. Marino, and L. Versari, “Sublinear-Space

Bounded-Delay Enumeration for Massive Network Analytics: Max-

imal Cliques,” Proc. ICALP 2016, LIPIcs, vol.55, pp.148:1–148:15,

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[6] K. Makino and T. Uno, “New algorithms for enumerating all maximal

cliques,” Proc. SWAT 2004, Lecture Notes in Computer Science,

vol.3111, pp.260–272, Springer, 2004.

[7] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of

an undirected graph,” Commun. ACM, vol.16, no.9, p.575–577, sep

1973.

[8] S.B. Seidman, “Network structure and minimum degree,” Social

Networks, vol.5, no.3, pp.269–287, 1983.

[9] X. Liao, Q. Liu, J. Jiang, X. Huang, J. Xu, and B. Choi, “Distributed

d-core decomposition over large directed graphs,” Proc. VLDB En-

dow., vol.15, no.8, pp.1546–1558, 2022.

[10] D.W. Matula and L.L. Beck, “Smallest-last ordering and clustering

and graph coloring algorithms,” J. ACM, vol.30, no.3, p.417–427,

jul 1983.

[11] V. King, A. Thomo, and Q. Yong, “Computing (1+epsilon)-

approximate degeneracy in sublinear time,” Proceedings of the

Thirty-Second International Joint Conference on Artificial Intelli-

gence, IJCAI-23, ed. E. Elkind, pp.2160–2168, International Joint

Conferences on Artificial Intelligence Organization, 8 2023. Main

Track.

[12] H. Esfandiari, S. Lattanzi, and V. Mirrokni, “Parallel and streaming

algorithms for k-core decomposition,” Proceedings of the 35th Inter-

national Conference on Machine Learning, ed. J. Dy and A. Krause,

Proceedings of Machine Learning Research, vol.80, pp.1397–1406,

PMLR, 10–15 Jul 2018.

[13] J. Cheng, Y. Ke, S. Chu, and M.T. Özsu, “Efficient core decomposi-

tion in massive networks,” 2011 IEEE 27th International Conference

on Data Engineering, pp.51–62, 2011.

[14] D. Wen, L. Qin, Y. Zhang, X. Lin, and J.X. Yu, “I/o efficient core

graph decomposition at web scale,” 2016 IEEE 32nd International

Conference on Data Engineering (ICDE), pp.133–144, 2016.

[15] R.H. Li, Q. Song, X. Xiao, L. Qin, G. Wang, J.X. Yu, and R. Mao,

“I/o-efficient algorithms for degeneracy computation on massive net-

works,” IEEE Transactions on Knowledge and Data Engineering,

vol.34, no.7, pp.3335–3348, 2022.

[16] M. Farach-Colton and M.T. Tsai, “Tight approximations of de-

generacy in large graphs,” LATIN 2016: Theoretical Informatics,

ed. E. Kranakis, G. Navarro, and E. Chávez, Berlin, Heidelberg,

pp.429–440, Springer Berlin Heidelberg, 2016.

[17] M. Elberfeld, A. Jakoby, and T. Tantau, “Logspace versions of the

theorems of bodlaender and courcelle,” 2010 IEEE 51st Annual Sym-

posium on Foundations of Computer Science, pp.143–152, 2010.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

