
DOI:10.1587/transinf.2024FCP0008

Publicized:2024/08/20

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Foundations of Computer Science

Bilaterally Colored Finite Automata and Bilaterally

Colored Regular Expressions

Akira ITO† and Yoshiaki TAKAHASHI††,

SUMMARY Recently, we introduced and investigated a col-
ored variant of finite automata, so-called “colored finite au-
tomata.” Its accepting states are able to be differently colored
each and therefore a single automaton can classify and distinguish
multiple languages at once. In this paper, we further extend the
concept of colored accepting states and propose a new automa-
ton, called bilaterally colored finite automaton (biCFA) which
can possess as many differently colored initial states as possible,
rather than a specified single initial state.

We next introduce its regular expression counterpart, called
bilaterally colored regular expression (biCRE), which exactly ex-
presses the same tuple of languages as accepted by the corre-
sponding biCFA. Notably, the mono-colored version of colored
regular expression is a succinct and intuitive alternative of the
existing ordinary regular expression.

We also demonstrate the usefulness and feasibility of biCRE
by applying the concept to extended (i.e., regular right part)
context-free grammar and exhibit a super-short pure Python pro-
gram which parses basic arithmetic expressions with addition and
multiplication operators.†

key words: Kleene’s Theorem, state elimination method, sys-
tem of equations, regex engine, compiler

1. Introduction

Among many concepts in automata and language the-
ory [1, 2], finite automaton and regular expression are
the most elemental and yet available to wider areas
beyond computer science field [3–5]. Recently, we in-
troduced and investigated a colored variant of finite
automata, so-called “colored finite automata.” Its ac-
cepting states are able to be differently colored each and
therefore a single automaton can classify and distin-
guish multiple languages at once. This mechanism not
only provides a structural advantage for the design of
language recognizers but also provokes new complexity
problems concerning unmixedness of multiple colored
languages [6, 7].

In this paper, we further extend the concept of col-
ored accepting states toward the initial state. That is,
the newly proposed automaton, called bilaterally col-

†The author with Non-Affiliated, Ube-shi, 755-8611
Japan. E-mail: aito@c-able.ne.jp

††The author with the National Institute of Technology,
Oshima College, Yamaguchi-ken, 742-2193 Japan. E-mail:
takahashiy@oshima-k.ac.jp (Corresponding author)

†This manuscript is a revised version of the conference
paper [14].

ored finite automaton (biCFA) can possess as many
differently colored initial states as possible, rather than
a specified single initial state. Due to this extension,
an n states biCFA is able to accept at most O(n2)
different languages by itself. To be convinced, imag-
ine a string-shaped FA which accepts the singleton set
L0
n = {0n1n}, n ≥ 1, with a pair of the leftmost 0-

colored initial state q0 and the rightmost n-colored ac-
cepting state q2n. Further, it can accept n2 different
languages Lj−1

i = {0n−j+11i} for i, j (1 ≤ i, j ≤ n) if
it has a j-colored initial state at the (j − 1)st position
from q0 and an i-colored accepting state at the ith po-
sition from the center.

We next introduce its regular expression counterpart,
called bilaterally colored regular expression (biCRE),
which exactly expresses the same tuple of languages
as accepted by some biCFA. That is, just one biCRE
can represent the same amount of languages as the cor-
responding biCFA. Incidentally, there has already ex-
isted a unilateral mono-colored version of biCRE (i.e.,
with accepting state position symbols not internally
weaved), named ‘pointed regular expression’ or ‘marked
regular expression’ in [8–10]. Although an example (de-
scribed as “(a + ▷ b)∗◁ = ▷ b(a+ b)∗◁” in our notation)
which illustrates its succinctness and intuitiveness was
noticed, a main part of their investigation has being de-
voted to efficient construction of deterministic FAs that
correspond to such REs. In contrast, this paper mainly
focuses on the opposite direction: the transformation
of bilaterally colored FAs to the corresponding biCREs.
Notably, the mono-colored version of bilaterally colored
regular expression turns out to be a succinct and intu-
itive alternative to ordinary regular expression. Partic-
ularly, the resultant bilateral regular expression trans-
formed from the ‘double chain’-like automaton [11] has
linear size O(n) for the left-to-right order of elimination
of the states while the ordinary expression has O(n3)
size in the same order during the course of the state-
elimination method. Such a phenomenon comes from
the fact that our bilateral regular expression is formed
in such a way that the start and end points of strings
it represents could appear anywhere in the expression
explicitly, rather than the implicit leftmost and right-
most boundaries of the expression.

We also demonstrate the usefulness and feasibility of
biCRE by applying the concept to extended (i.e., regu-
lar right part) context-free grammar and exhibit a short

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Python program (25 lines without any extra module)
which does parse arithmetic expressions with plus and
multiplying operators.

This paper is organized as follows. In Section 2, we
introduce bilaterally colored FA and give an example
of its usage in lexical analysis. In Section 3, we in-
troduce bilaterally colored RE as its counterpart, then
investigate its fundamental properties and give some
examples showing how familiar regular expressions are
rewritten in bilateral form. In Section 4, we first show
a method of transformation from biCFAs to biCREs
based on the solution method of simultaneous language
equations and give some examples demonstrating how
conventional finite automata are converted to bilateral
regular expressions without any complex manipulation.
We next demonstrate how the inverse transformation
can be done by using the example described in the
case of biCFA-to-biCRE transformation. Inductively,
we have the equivalence of bilaterally colored versions
of FAs and REs. In Section 5, we give examples of their
application to an improvement of existing regular ex-
pression matching engines and a simplification of parser
program for well-known context-free grammars.

Now we recall the definition of ordinary regular ex-
pression [12].

Definition 1: Regular expression over an alphabet Σ
is defined inductively:

1. ε, ∅, and a ∈ Σ are regular expressions expressing
the languages L(ε) = {ε}, L(∅) = ∅, and L(a) =
{a}, respectively.

2. If r and s are regular expressions expressing the
languages L(r) and L(s), then r + s, rs, and r∗

are regular expressions expressing the languages
L(r + s) = L(r) ∪ L(s), L(rs) = L(r)L(s), and
L(r∗) = L(r)∗, respectively.

2. Bilaterally Colored Finite Automata

Definition 2: ([6,7]) Let Li be a language over alpha-
bet Σ for i = 1, . . . , k, k ≥ 1. A k-tuple (L1, L2, . . . , Lk)
of languages is called colored language (vector) of k col-
ors over Σ.

The terminology of language vector or tuple of lan-
guages was first used to describe the behavior of a
multiple-output sequential circuit in [13].

Definition 3: A bilaterally colored finite automaton,
abbreviated biCFA, is a 5-tuple M = (Σ, Q,Σl

j=1Q
j
0, δ,∑k

i=1 Fi), where

1. Q is a finite set of states,
2. Σ is a finite set of input symbols,
3. δ is the transition function from Q × (Σ ∪ {ε}) to

2Q,

4. Σl
j=1Q

j
0 ⊆ Q is a mutually disjoint family {Q1

0, . . . ,

Ql
0} of setsQ

j
0’s, whereQ

j
0 is the set of initial states

with jth color,
5. Σk

i=1Fi ⊆ Q is a mutually disjoint family {F1, . . . ,
Fk} of sets Fi’s, where Fi is the set of accepting
states with ith color.†

We denote as δ̂(q, x) the set of reachable states when
M starts from state q and finishes after it reads the
input string x. Define††

Lj
i (M)

△
= {x ∈ Σ∗ | δ̂(qj0, x)

∩
Fi ̸= ∅, qj0 ∈ Qj

0},
Li(M)

△
=

∪l
j=1 L

j
i (M),

Lj(M)
△
=

∪k
i=1 L

j
i (M), and

L(M)
△
=

∪l
j=1 L

j(M) =
∪k

i=1 Li(M)

=
∪l

j=1

∪k
i=1 L

j
i (M).

Lj
i (M) is said to be the language accepted by M

which starts with jth color and ends with ith color and
L(M) is called the (unified) language accepted by M .

Note that ordinary non-colored finite automaton M
is a special case of biCFA whose families Σl

j=1Q
j
0 and

Σk
i=1Fi of sets of initial states and accepting states are

equal to {{q0}} and {F}, respectively.

1
q

2
q

⊕

d
�

�

4
q

0
q

3
q

d

R

d

d

G

B

C

Fig. 1 A biCFA accepting decimal integers or fractional num-
bers with or without plus signs, simultaneously.

Example 1: Consider a bilaterally colored finite au-
tomaton M depicted in Fig. 1, where d is the abbrevia-
tion of digit characters {0, . . . , 9}. M accepts fractional
numbers (having decimal points) with or without plus
signs in the same way as Example 2.16 in [12]. In addi-
tion, M also accepts integer numbers (not having deci-
mal points) with or without plus signs. More precisely,
M distinguishes those four different languages:

†For sets X and Y, direct sum X + Y is the union X
∪ Y satisfying the disjointness X ∩ Y = ∅. Notice that we
use the regular expression r+ s to denote language L1∪L2,
where L1 and L2 are the languages expressed by the regular
expressions r and s, respectively.

††X
△
= Y means that X is defined as Y .

ITO and TAKAHASHI: BILATERALLY COLORED FINITE AUTOMATA AND BILATERALLY COLORED REGULAR EXPRESSIONS
3

LR
B(M) = ⊕ d∗(· d + d ·) d∗,

LC
B(M) = d∗(· d + d ·) d∗,

LR
G(M) = ⊕ d+, and

LC
G(M) = d+.

Furthermore,
LB(M) = LR

B(M) ∪ LC
B(M) = (⊕+ ε) d∗(· d + d ·) d∗,

LG(M) = LR
G(M) ∪ LC

G(M) = (⊕+ ε) d+, and
L(M) = LB(M) ∪ LG(M)

= (⊕+ ε) d∗(· d + d ·) d∗ + (⊕+ ε) d+.

3. Bilaterally Colored Regular Expressions

In this section, we first give the syntactical and seman-
tic definitions of bilaterally colored regular expression,
which is a natural generalization of that of ordinary
regular expression.

Definition 4: A bilaterally colored regular expression
(abbreviated biCRE) over an alphabet Σ with l ≥ 1
initial state colors and k ≥ 1 accepting state colors is
defined inductively:

1. ε, ▷j (1 ≤ j ≤ l), ◁i (1 ≤ i ≤ k), ∅, and a ∈ Σ are
bilaterally colored regular expressions.

2. If r and s are bilaterally colored regular expres-
sions, then r + s, rs, and r∗ are bilaterally colored
regular expressions.

The symbols ▷j (1 ≤ j ≤ l) and ◁i (1 ≤ i ≤ k) are called
j-colored initial state position symbol and i-colored ac-
cepting state position symbol, respectively.

Definition 5: Let r be a biCRE with l initial state
colors and k accepting state colors. Let posj(r), 1 ≤
j ≤ l, and posi(r), 1 ≤ i ≤ k, denote the sets of posi-
tions appearing in r of j-colored initial state position
symbols and i-colored accepting state position symbols,
respectively. For each j′ ∈ posj(r), i′ ∈ posi(r), 1 ≤
j ≤ l, 1 ≤ i ≤ k, let r|j

′

i′ denote the regular expres-
sion that is obtained from r by replacing with ε’s all
initial state position symbols and all accepting state
position symbols except a pair of the j′th initial state
position symbol and the i′th accepting state position

symbol. Furthermore, let r|0i′ and r|j
′

0 denote the regu-

lar expressions that are obtained from r|j
′

i′ by replacing
with ε its j′th initial state position symbol and its i′th
accepting state position symbol, respectively.

Definition 6: Let r be a biCRE with l initial state
and k accepting state colors. For each j(1 ≤ j ≤ l),
i(1 ≤ i ≤ k), the (j, i)-component of colored language
(vector) L(r) expressed by r is recursively defined as

Lj
i (r)

△
=

∪
j′∈posj(r)

∪
i′∈posi(r)

L(r|j
′

i′)

(this resolving of r is called pairs-scattering), where

(U) If r|j
′

i′ = s+ t，then L(r|j
′

i′) = L(s|j
′

i′)
∪
L(t|j

′

i′),
i.e., ordinary union (Boolean sum) operation.

(Cl) If r|j
′

i′ = st, ▷ /∈ s ̸= ε，then L(r|j
′

i′) = L(t|j
′

i′),
i.e., discard of useless prefix s (leftmost substring).

(Cr) If r|j
′

i′ = st, ◁ /∈ t ̸= ε，then L(r|j
′

i′) = L(s|j
′

i′),
i.e., discard of useless suffix t (rightmost sub-
string).

(Si) If r|j
′

i′ = s∗, ▷ ∈ s，then L(r|j
′

i′) = L(s|j
′

i′ s
∗|0i′),

i.e., eviction of initial position symbol out of star
operator.

(Sa) If r|j
′

i′ = s∗, ◁ ∈ s，then L(r|j
′

i′) = L(s∗|j
′

0 s|
j′

i′),
i.e., eviction of accepting position symbol out of
star operator.

(E) If r|j
′

i′ = ε or r|j
′

i′ = ∅，then L(r|j
′

i′) = L(∅) = ∅,
i.e., discard of empty string and empty set.

(O) If r|j
′

i′ = ▷ s ◁ (and ▷, ◁ /∈ s)，then L(r|j
′

i′) = L(s),
where L(s) is defined in Definition 1 for ordinary
regular expression s,
i.e., extraction of a string enclosed with both end
mark position symbols as meaningful contents.

� �

�

(Si)

(Sa)

�

�

� �

��

� �

�

� �

� �

Fig. 2 Illustrations of the rules (Si) and (Sa) of Definition 6.

See Fig. 2 for the graphical meanings of the rules
(Si) and (Sa) above. Note that after applying the rule
(Si) or (Sa), we must repeat another cycle of pairs-
scattering and star-eviction if the resulting expression
has more than one pair of position symbols ▷, ◁.

Hereafter, we abbreviate α = β when the two lan-
guages expressed by α and β are the same.

The following fact is an extremal case of biCRE (See
Fig. 3 for their intuitive meanings).

Fact 1: 1. For r ∈ {▷, ◁, ◁ ▷, ◁+ ▷, ▷+ ◁}, L(r) = ∅.
2. For r ∈ {▷ ◁, (◁ ▷)∗, (▷ ◁)∗, (◁+ ▷)∗, (▷+ ◁)∗},

L(r) = {ε}.

(Proof)

1. From the rule (Cr) with s = ε, t = ▷ ̸= ε and (E)

of Definition 6, we have L(▷|j
′

i′) = L(ε|j
′

i′) = ∅.
From the rule (Cl) with s = ◁ ̸= ε, t = ε and (E)

of Definition 6, we have L(◁|j
′

i′) = L(ε|j
′

i′) = ∅.
From the rule (Cr) of Definition 6 with s = ◁ and

t = ▷, we have L(◁ ▷|j
′

i′) = L(◁|j
′

i′) = ∅.
From the rule (U) of Definition 6 with s = ◁ and

t = ▷, we have L(◁+▷ |j
′

i′) = L(▷+◁ |j
′

i′) = L(◁|j
′

i′)+

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

� �

�1� �2� �3� �4�

�

�

�

�

�

�

�

�

�5� �6� �7�

�

�

�8�

Fig. 3 FAs corresponding to the expressions (1) ▷ ◁, (2) ◁ ▷,
(3) ▷, (4) ◁, (5) ◁+▷ or ▷+◁, (6) (▷ ◁)∗, (7) (◁ ▷)∗, and (8) (◁+▷)∗

or (▷+ ◁)∗.

L(▷|j
′

i′) = ∅.

2. From the rule (O) of Definition 6 with s = ε,

L(▷ ◁ |j
′

i′) = ε.
From the rules (Si), (Sa) of Definition 6 (and pairs-
scattering), we have
(◁ ▷)∗ = (▷)∗(◁ ▷) = (▷)∗(◁) + (ε)∗(◁ ▷)

= (▷)(ε)∗(◁) + (◁ ▷) = (▷)(◁) + ∅ = ▷ ◁,
(▷ ◁)∗ = (▷)∗(▷ ◁) = (▷)∗(◁) + (ε)∗(▷ ◁)

= (▷)(ε)∗(◁) + (▷ ◁)
= (▷)(◁) + ▷ ◁ = ▷ ◁, and

(◁+ ▷)∗= (▷+ ◁)∗ = (▷+ ◁)(ε+ ◁)∗

= (▷+ ◁)(ε+ ε)∗ + (▷+ ε)(ε+ ◁)∗

= (▷+ ◁) + (▷+ ε)(ε+ ε)∗(ε+ ◁)
= ∅+ ▷ ◁ = ▷ ◁.

□
Example 2: The four regular expressions for Lj

i (M),
j ∈ {R,C}, i ∈ {G,B} in Example 1 are aggregated to
a single expression

▷R ⊕ ▷Cd∗(· d + d ◁G ·) d∗◁B
= r|RG + r|RB + r|CG + r|CB
= ▷R ⊕ d∗(· d + d ◁G ·) d∗ + ▷R ⊕ d∗(· d + d ·) d∗◁B

+⊕ ▷Cd∗(· d + d ◁G ·) d∗ +⊕ ▷Cd∗(· d + d ·) d∗◁B
= ▷R ⊕ d∗d ◁G + ▷R ⊕ d∗(· d + d ·) d∗◁B

+ ▷Cd∗d ◁G + ▷Cd∗(· d + d ·) d∗◁B.

The last equality is derived by the rules (E), (Cl), and
(Cr) of Definition 6.

Example 3: (Example 3.2 in [12]) The language
(01)∗ +1(01)∗ +(01)∗0+1(01)∗0 = (ε+1)(01)∗(ε+0),
in which neither 0 nor 1 continues, is expressed by a bi-
CRE ▷ (0 ▷ ◁ 1)∗◁ because the similar derivation holds
as in Example 2 (see Fig. 4 for its graphical meaning):

▷(0 ▷ ◁ 1)∗◁
= ▷(01)∗◁+ ▷(0 ◁ 1)∗ + (0 ▷ ◁ 1)∗ + (0 ▷ 1)∗◁
= ▷(01)∗◁ + ▷(01)∗0 ◁+ (0 ▷ ◁ 1)(0 ◁ 1)∗ + (0 ▷ 1)(01)∗◁

...

= ▷(01)∗◁+ ▷(01)∗0 ◁+ ▷1(01)∗0 ◁+ ▷ ◁+ ▷1(01)∗◁.

The following identities between bilateral regular ex-
pressions are derived in the similar manner as before.

�

0 1

Fig. 4 An FA corresponding to the expression ▷ (0 ▷ ◁ 1)∗◁.

Proposition 1: For any expression α, β which do not
contain any state position symbol, the following holds
(See Fig. 5 for their intuitive meanings).

1. (“the shifting rule” [15])

▷ (α◁β)∗ = ▷ (αβ)∗α◁ = ▷α(βα)∗◁ = (β ▷α)∗◁,

2. (“the denesting rule” [15])

▷ (α∗◁ β)∗ = ▷ (α∗β)∗α∗◁
= ▷(α+ β)∗◁
= ▷ β∗(αβ∗)∗◁ = (α▷β∗)∗◁,

3. (one of “the aperiodic identities” [11])

(α▷ ◁ β)∗ = ▷ (βα)∗◁ = (α◁ ▷ β)∗ + ▷ ◁.

Practically, the identities above should not be used
when they are surrounded by other loops of star oper-
ators.

� �

�

�1�

�

�

�

�2�

� �

�

�3�

Fig. 5 FAs corresponding to the expressions (1) ▷ (α◁β)∗,
(2) ▷ (α∗◁ β)∗, and (3) (α▷ ◁ β)∗.

Example 4: (Sub-subsection 3.3.3 in [12]) From the
shifting rule ▷α(βα)∗◁ = ▷ (α◁β)∗ of Proposition 1,
the Unix-style regular expression

‘[A-Z][a-z]*([A-Z][a-z]*)*’
for names of streets can be expressed by a biCRE

‘:>([A-Z][a-z]*<:)*,’
where ‘:>’ and ‘<:’ mimic initial and accepting state
position symbols ▷ and ◁, respectively (see Fig. 6 for its
graphical meaning). The same convention will be seen
from now on.

Example 5: The regular expression for email ad-
dresses in HTML Living Standard [16]

[a-zA-Z0-9.!#$%&’*+\/=?^_$‘{|}~-]+@[a-zA-Z
0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:
\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z
0-9])?)*

can be rewritten to a bilateral one:

ITO and TAKAHASHI: BILATERALLY COLORED FINITE AUTOMATA AND BILATERALLY COLORED REGULAR EXPRESSIONS
5

�

A,…,Z

a,…,z

Fig. 6 An FA corresponding to the expression ‘:>([A-Z][a-z]*
<:)*.’

:>[a-zA-Z0-9.!#$%&’*+\/=?^_‘{|}~-]+@(:?[a
-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])
?<:\.)*,

since it holds that

▷ xy(zy)∗◁ = ▷ x(yz)∗y ◁ = ▷ x(y ◁ z)∗,

where x = ‘[a-zA-Z0-9.!#$%&’*+\/=?^_$‘{|}~-]+@,’
y = ‘[w]([w-]{0,61}[w])?,’ z =‘\.,’ w = ‘a-zA-Z
0-9’ and the equality each comes from the shifting rule.

Remark 1: We must be aware of the following gen-
eral principles.

• When more than one pair ▷, ◁ of left and right tri-
angles appear in a given biCRE (in either mono-
colored case or multi-colored case), we must first
split them to separated biCREs, each of which has
only one pair of triangles (pairs-scattering), and
then must do other manipulations, e.g.,

▷ a(▷ b ◁)∗= ▷ a(ε b ◁)∗ + ε a(▷ b ◁)∗

= ▷ a(b)∗(b ◁) + a(▷ b)∗(▷ b ◁).

The last equality is derived by the rule (Sa) of Def-
inition 6.

• To evict position state triangles out of nested star
parentheses, we must proceed in a top-down man-
ner: The whole contents in the outermost star
parentheses are copied to its left or right side at
first, then the inner triangles of the copied contents
can be evicted if they are in another star loop, e.g.,

▷ ((a ◁ b)∗c)∗= ▷ ((ab)∗c)∗((a ◁ b)∗c)
= ▷ ((ab)∗c)∗((ab)∗(a ◁ b)c).

Both equalities are derived by the rule (Sa) of Def-
inition 6.

As the final remark of this section, we point out the
well-definedness of Definition 6: When even the rules
(Si) and (Sa) are simultaneously applicable, the order
of these applications makes no difference in their out-
comes, i.e., they are confluent.

Let α[▷,◁]∗ be a star loop sub-expression of some con-
junctive (product) term T of a regular expression such
that (1) there exists exactly one pair of position sym-
bols ▷ and ◁ in α, (2) no position symbol outside it,
and (3) there may be other star loops inside α but not

outside α∗, i.e., it is the outermost star loop contain-
ing the position symbols ▷,◁ within T . Similarly, for
example, let α[▷,] denotes the modified α such that its
accepting state position symbol ◁ is replaced with ε.

Fact 2: α[▷,◁]∗ = α[▷,◁] + α[▷,]α[,]∗α[,◁].

(Proof) Let T [α[▷,◁]∗] denotes such a term T as de-
scribed above containing sub-expression α[▷,◁]∗. By
applying the rule (Si), pairs-scattering, the rules
(Cr) and (Sa) in this order, we have T [α[▷,◁]∗] =
T [α[▷,◁]α[,◁]∗] = T [α[▷,◁]α[,]∗] + T [α[▷,]α[,◁]∗] =
T [α[▷,◁]] + T [α[▷,]α[,]∗α[,◁]]. In the same way, by ap-
plying the rule (Sa), pairs-scattering, the rules (Si)
and (Cl) in this order, we have T [α[▷,◁]∗] = · · · =
T [α[▷,]α[,]∗α[,◁]] + T [α[▷,◁]], too. On the other hand,
by pairs-scattering, the rules (Cl), (Cr) and (E), we
have also T [α[▷,◁] + α[▷,]α[,]∗α[,◁]] = · · · = T [α[▷,◁]] +
T [α[▷,]α[,]∗α[,◁]]. □

4. Equivalence of Bilaterally Colored FAs and
Bilaterally Colored REs

From the definitions described so far, we can see a
multi-colored biCFA (biCRE) as a color-distinguished
sum of FAs (REs) each of which has just one pair of ini-
tial state and accepting state (these position symbols).
We can, therefore, adopt classical algorithms of trans-
formations between ordinary FAs and REs as a whole.

As a result, the termination and correctness of our
modified versions follow from the original ones.

4.1 Transformation of BiCFAs to BiCREs

Among several methods to transform finite automata to
their equivalent regular expressions, we adopt the fixed
point solution method for a system of language equa-
tions [11,17–19]. It is known [11] that the most popular
(graphical) “state elimination method” and this rather
literate (algebraic) system of equations method are the
same and therefore produce the same expression from
a given automaton, provided that states in the former
and indeterminate variables in the latter are eliminated
in the same order during the course of transformation.

An equation X = aY + b for some automaton M
means that from state X it can go to state Y via
the transition labeled with a or go to some accept-
ing state and halt via the transition labeled with b.
We also denote such equation as ‘X → aY + b’ in-
terchangeably because we do not require the set theo-
retical equality between two languages represented by
the left-hand side and the right-hand side, but rather
require the least fixed-point solution obtained by (in-
finite) self-substitution of the equations that are re-
garded as rewriting rules of left-hand side nonterminals
to right-hand side sentential forms just like right linear
grammars for regular languages.

In this section, we often use the following lemma,

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

known as Arden’s Lemma, in order to eliminate inde-
terminate variables from right-hand side of the given
equations.

Lemma 1: Let A and B be two languages. Then,
A∗B is the (least) solution of the equation X = AX +
B (or X → AX +B). □

The following is a key to the relative compactness of
the resulting expressions of our transformation.

Theorem 1: Let X and Y be an accepting state and
a state of some biCFA, respectively. Then, all the equa-
tions below are equivalent:

(1) X → aX + b Y + ◁,
(2) X → aX + ◁ b Y,
(3) X → ◁ aX + b Y, and
(4) X → ◁ aX + ◁ b Y.

(Proof) Suppose that the equations above become the
following forms due to the replacement of Y with αX+
β just before X is eliminated from the right hand side
of the equation: (1)X → (a+ bα)X + bβ + ◁, (2)X →
(a+bα)X+◁ bβ, (3)X → (◁ a+bα)X+bβ, and (4)X →
(◁ a+ bα)X + ◁ bβ, where α, β do not contain variable
X. Below, α[], etc., denotes the regular expression α
from which ◁’s are replaced with ε’s. Therefore, e.g.,
it holds that αβγ = αβ[]γ[] + α[]βγ[] + α[]β[]γ. By
Lemma 1, we have

(1) : X= (a+ bα)∗(bβ + ◁)
= (a+ bα)∗(bβ[] + ε) + (a+ bα[])∗(bβ + ε)

+ (a+ bα[])∗(bβ[] + ◁)
= (a+ bα)∗ + (a+ bα[])∗bβ + (a+ bα[])∗◁,

(2) : X= (a+ bα)∗(◁ bβ)
= (a+ bα)∗(ε bβ[]) + (a+ bα[])∗(◁ bβ[])

+ (a+ bα[])∗(ε bβ)
= (a+ bα)∗ + (a+ bα[])∗◁+ (a+ bα[])∗(bβ),

(3) : X= (◁ a+ bα)∗(bβ)
= (◁ a+ bα[])∗(bβ[]) + (εa+ bα)∗(bβ[])

+ (εa+ bα[])∗(bβ)
= (a+ bα[])∗(◁ a+ bα[])(bβ[]) + (a+ bα)∗

+(a+ bα[])∗bβ
= (a+ bα[])∗◁+ (a+ bα)∗ + (a+ bα[])∗bβ,

and

(4) : X= (◁ a+ bα)∗(◁ bβ)
= (◁ a+ bα)∗(ε bβ) + (a+ bα)∗(◁ bβ)
= (a+ bα)∗(bβ + ◁) from the parts (2) and

(3) above.

□

Note that the part (1) of the theorem above corre-
sponds to the conventional equation X = aX + bY + ε.
Thus, Theorem 1 says that there exists more than one
way to indicate that some state is accepting in a given
equation. Similarly, there exist many ways for initial
state indication but we adopt here the way that is most
operative to formulate the system of equations at first

and systematic to solve it to the final expression: If
X is an initial state of some biCFA, the left-hand side
of the equation for X is initially set as ▷X. When the
contents of body of the equation is resolved or arranged
to be substituted to another equation, the initial state
position symbol ▷ must be transposed from the left-
hand side to the right-hand side, e.g., ▷X → α · · · must
change to X = ▷α · · · .

As will be seen below, initial and accepting state posi-
tion symbols embedded in state equations are properly
inserted in intermediate forms of regular expressions
during the course of transformation.

Example 6: We transform the biCFA classifying dec-
imal numbers shown in Fig. 1 to an equivalent biCRE
as follows. From the figure, we have the system of equa-
tions.

▷R q0 → ⊕ q1 · · · (0)
▷C q1 → d q1 + · q2 + d q4 · · · (1)

q2 → d q3 · · · (2)
q3 → d q3 + ◁B · · · (3)
q4 → ◁G · q3 · · · (4)

Note that the symbol ◁G for G-colored accepting state
in (4) is attached at the front of the term · q3.
Appling Lemma 1 to (3), q3 = d∗◁B. · · · (3′)
Substituting it to (2), q2 = d(d∗◁B) = dd∗◁B. · · · (2′)
Substituting (3′) to (4), q4 = ◁G · (d∗ ◁B) = ◁G · d∗ ◁B.
Substituting it and (2′) to (1),

▷Cq1 → d q1 + · (d d∗ ◁B) + d(◁G · d∗◁B).
Hence, from Lemma 1,

▷Cq1 → d∗(· dd∗◁B + d ◁G · d∗◁B) = d∗(· d + d ◁G ·)
d∗◁B.

By left-to-right transposition of the initial state posi-
tion symbol,

q1 = ▷Cd∗(· d + d ◁G ·) d∗◁B.
Substituting it to (0), ▷Rq0 → ⊕(▷Cd∗(· d + d ◁G ·) d∗

◁B).
Hence, by left-to-right transposition of the initial state
position symbol,

q0 = ▷R⊕ ▷Cd∗(· d + d ◁G ·) d∗◁B.

Example 7: (Example 3.6 in [12]) Fig. 7 is an FA
that accepts strings of 0’s and 1’s such that either the
second or third position from the end has a symbol 1.
From the figure, we obtain the system of equations as
follows.

▷A → (0 + 1)A+ 1B · · · (1)
B → (0 + 1)C · · · (2)
C → ◁ (0 + 1)D · · · (3)
D → ◁ · · · (4)

Note that the symbol ◁ for accepting state in (3) is
attached at the front of the term (0+1)D. In the same
manner as the example above, we get

A = ▷ (0 + 1)∗1(0 + 1) ◁ (0 + 1) ◁.

ITO and TAKAHASHI: BILATERALLY COLORED FINITE AUTOMATA AND BILATERALLY COLORED REGULAR EXPRESSIONS
7

Compare this expression with the ordinary regular ex-
pression (0 + 1)∗1(0 + 1) + (0 + 1)∗1(0 + 1)(0 + 1) =
(0 + 1)∗1(0 + 1)(ε+ (0 + 1)) [12].

A B C D

0, 1

0, 1 0, 11

Fig. 7 An NFA accepting strings that have a symbol 1 either
two or three positions from the rightmost end [12].

Example 8: Fig. 8 is an FA that was originally de-
signed to accept in state p0 the binary numbers which
are multiples of 6. It can also distinguish the other
cases in 3 different colors. From the figure, we obtain
the system of equations as follows.

▷ p0 → 0 p0 + 1 p1 + ◁0 · · · (0)
p1 → ◁10 p2 + 1 p3 · · · (1)
p2 → ◁20 p1 + 1 p2 · · · (2)
p3 → ◁30 p0 + 1 p1 · · · (3)

0

1
0

0

0

1 1

1

A B
C

D

0
p

1
p

2
p

3
p

Fig. 8 A deterministic biCFA accepting binary numbers which
are multiples of 6 and also classifying the remaining numbers into
three categories.

Note that the symbols ◁1, ◁2, and ◁3 for accepting
states in (1), (2), and (3) are attached at the front of
the terms 0 p2, 0 p1, and 0 p0, respectively.
Applying Lemma 1 to (2), we have

p2 → 1∗(◁2 0 p1). · · · (2′)
Substituting (2′) and (3) to (1), we have

p1 → ◁1 0(1
∗◁20 p1) + 1(◁3 0 p0 + 1 p1)

= (◁1 01
∗◁20 + 11)p1 + 1◁3 0 p0.

Therefore from Lemma 1, we get
p1 = (◁101

∗◁20 + 11)∗1◁30 p0.
Substituting it to (0), we have

▷ p0 → 0 p0 + 1((◁101
∗◁20 + 11)∗1◁30 p0) + ◁0

= (0 + 1(◁101
∗◁20 + 11)∗1◁30)p0 + ◁0.

Therefore, we get

p0 = ▷(0 + 1(◁101
∗◁20 + 11)∗1◁30)

∗◁0.

It is known that the order of eliminated states enor-
mously affects the appearance of resulting REs trans-
formed from FAs. The next example shows that a

p q r

a a

a

bb

b

Fig. 9 The FA D3 in [11] for demonstrating the effect of the
order of state elimination.

preferable phenomenon happens in the bilateral case.

Example 9: (Example 16 in [11]) Below are the orig-
inal equations for the FA M in [11].

i → p · · · (1)
p → a p+ b q + t · · · (2)
q → a r + b p · · · (3)
r → a q + b r · · · (4)
t → ε, · · · (5)

where i is the initial state of M . Abbreviating (1) and
(5) and moving the accepting position symbol ◁ at the
tail of (2) to the head of the term bq, we get a simplified
system of equations (See Fig. 9): ▷ p → a p+ ◁ b q · · · (2′)

q → a r + b p · · · (3)
r → a q + b r · · · (4)

In case of the elimination order p < q < r (from left to
right in the figure): From (2′) and Lemma 1, we have

p = ▷ a∗◁ b q.
Substituting it to (3) and using Lemma 1,
q = a r + b(▷ a∗◁ b q) = b ▷ a∗◁ b q + a r
= (b ▷ a∗◁ b)∗a r.

Substituting it to (4),
r → a((b ▷ a∗◁ b)∗a r)+b r = (a(b ▷ a∗◁ b)∗a+b) r+∅.

Hence from Lemma 1 (and the rule (Cr) of Definition
6 with t = ∅),

r = (a(b ▷ a∗◁ b)∗a+ b)∗∅ = (a(b ▷ a∗◁ b)∗a+ b)∗.

Note the following:

1. Contrary to the ordinary elimination method,
backward substitution is not executed after the ac-
complishment of forward elimination for an arbi-
trary state (not necessarily for the initial state).

2. The respective ordinary regular expression [11]
a∗b(ba∗b)∗a(a(ba∗b)∗a+ b)∗a(ba∗b)∗ba∗

+ a∗b(ba∗b)∗ba∗ + a∗

easily derived from the corresponding bilateral ex-
pression above by using the method described so
far.

3. In the same order as p < q < r, it is easily shown
that the transformation of a generalized FA Dn

having n states produces the biCRE
z2n = (b(a · · · (a(b ▷ a∗◁ b)∗a)∗ · · · a)∗b)∗ + a)∗,
z2n+1 = (a(b · · · (a(b ▷ a∗◁ b)∗a)∗ · · · b)∗a)∗ + b)∗,

for each n ≥ 1 and z1 = ▷ (a+◁ b)∗ = ▷ (a+b)∗(a+
◁ b) = ▷ (a+ b)∗a+ ▷ (a+ b)∗◁ b = ∅+ ▷ (a+ b)∗◁ =

8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

▷ (a+b)∗◁, thus its length satisfies |zn| = O(n). On
the other hand, the ordinary regular expression for
Dn can be described as

y2n = z′1bz
′
2a · · · az′2n−1bz

′′
2nbz

′
2n−1a · · · az′2bz′1

+Y2n−1,
y2n+1 = z′1bz

′
2a · · · bz′2naz′′2n+1az

′
2nb · · · az′2bz′1

+Y2n,
for each n ≥ 1 and y1 = (a+ b)∗, where

z′2n = (b(a(· · · (a(ba∗b)∗a)∗ · · ·)∗a)∗b)∗,
z′2n+1 = (a(b(· · · (a(ba∗b)∗a)∗ · · ·)∗b)∗a)∗,

for each n ≥ 1 and z′1 = a∗,
z′′2n = (b(a(· · · (a(ba∗b)∗a)∗ · · ·)∗a)∗b+ a)∗,
z′′2n+1 = (a(b(· · · (a(ba∗b)∗a)∗ · · ·)∗b)∗a+ b)∗,

for each n ≥ 1, and
Y2n = z′1bz

′
2a · · · az′2n−1bz

′
2nbz

′
2n−1a · · · az′2bz′1

+Y2n−1,
Y2n+1 = z′1bz

′
2a · · · bz′2naz′2n+1az

′
2nb · · · az′2bz′1

+Y2n,
for each n ≥ 1 and Y1 = a∗, thus its length satisfies
|yn| = O(n2) + |Yn−1| = O(n3).

4.2 Transformation of BiCREs to BiCFAs

This subsection will assert that the inverse direction of
the previous subsection also holds, i.e., any biCRE can
be simulated by a certain biCFA. Our transformation
is essentially the same as conventional one since the
appearance of biCRE directly reflects the structure of
some biCFA.

There are several well-known algorithms to transform
ordinary REs to their corresponding FAs [11, 17]. Al-
though any of them can be adapted to our purpose,
we adopt here the concept of ‘position automaton’ (or
‘Glushkov automaton’) [20, 21], which allows us a con-
cise implementation of the algorithm and is constructed
by so-called ‘follow’ function [22, 23]. The follow func-
tion of a regular expression r maps a position of input
symbol in r to the set of positions where the correspond-
ing automaton can go through only with ε-transitions.

�*� (0 + 1) 1 (0 + 1) (0 + 1) ���� �� �� � �� �� ���� �

0 1 2 3 4 5 6 7 8 9

Fig. 10 The ε-transitions derived from the ‘follow’ function of
the expression ▷ (0 + 1)∗1(0 + 1) ◁ (0 + 1) ◁.

Example 10: Fig. 10 shows the ε-transitions derived
from the follow function of the bilaterally monotone-
colored regular expression ▷ (0 + 1)∗1(0 + 1) ◁ (0 + 1) ◁
in Example 10.

More precisely, consider a biCRE r over Σ with l
kinds of initial state position symbols and k kinds of

accepting state position symbols. Let the all symbols
excluding operators ‘+’, ‘·’, ‘∗’ and parentheses ‘(’,‘)’
appearing in r be numbered starting with 0 and ending
with a natural number N from left to right as shown in
Fig. 10. Let pos(r) = {0, 1, . . . , N} and for each m ∈
pos(r), let am ∈ Σ

∪
{▷j | 1 ≤ j ≤ l}

∪
{◁i | 1 ≤ i ≤ k}

denotes the mth symbol in such a numbering.
Furthermore, consider the syntax tree t of r whose

internal nodes are labeled with expression operators.
To construct the function follow, which is a mapping
from pos(r) to 2pos(r), and its three helper functions
nullable, which maps nodes of t to boolean values, and
first, last, which both are mappings from nodes of t to
2pos(r), we can adopt the ordinary procedure described
in [22,23] except the setting values for new symbols: In
the course of post-order traversal of t, if a visited node v
is labeled with an initial state position symbol ▷, then
set nullable(v) = true and first(v) = ∅, which means
that no transition can reach at this symbol but can
skip it over. Similarly, if v is labeled with an accepting
state position symbol ◁, then set nullable(v) = true and
last(v) = ∅, which means that no transition can depart
from this symbol but can skip it over.

Definition 7: Let r be a biCRE over Σ with l initial
state position symbols and k accepting state position
symbols. The position ε-automaton for r is a biCFA
Mr = (Q,Σ, δ,Σl

j=1Q
j
0,Σ

k
i=1Fi), where

• Qj
0 = {m· | am = ▷j ,m ∈ pos(r)}, 1 ≤ j ≤ l,

Fi = {·m | am = ◁i,m ∈ pos(r)}, 1 ≤ i ≤ k,

Q = {·m,m· | am ∈ Σ,m ∈ pos(r)}
∪

Σl
j=1Q

j
0

∪
Σk

i=1Fi, and
• δ(m·, ε) = {·n | n ∈ follow(m)} and especially if
am ∈ Σ, δ(·m, am) = {m·} for each m ∈ pos(r).

For example, the resulting automaton Mr =
(Q,Σ, δ, q0, F) converted from r of Fig. 10 is as fol-
lows:

• Q = {0·, ·1, 1·, ·2, 2·, ·3, 3·, ·4, 4·, ·5, 5·, ·6, ·7, 7·, ·8, 8·,
· 9}, q0 = 0·, F = {·6, ·9},

• δ(0·, ε) = {·1, ·2, ·3} since follow(0) = {1, 2, 3},
δ(·1,‘0’) = {1·}, . . . , δ(8·, ε) = {·9}.

Based on this information, we can simulate the be-
havior of the automaton on any given input string. Be-
low is the running process of Mr on string 00101 from
the initial configuration to an accepting configuration,
where we use the derivative notation [13, 24], i.e., ∂ w
denotes the regular expression which expresses the sit-
uation when the automaton have read the prefix w of
00101.

ITO and TAKAHASHI: BILATERALLY COLORED FINITE AUTOMATA AND BILATERALLY COLORED REGULAR EXPRESSIONS
9

∂ ε = ▷ (0 + 1)∗1(0 + 1) ◁ (0 + 1)◁
∼ (▷ 0 + ▷ 1)∗▷ 1(0 + 1) ◁ (0 + 1) ◁,

∂ 0 = (0 ▷ + 1)∗1(0 + 1) ◁ (0 + 1) ◁
∼ (▷ 0 + ▷ 1)∗▷ 1(0 + 1) ◁ (0 + 1) ◁ = ∂ ε,
...

∂ 00101 = (0 + 1 ▷)∗1 ▷ (0 + 1) ◁ (0 + 1 ▷) ◁
∼ (▷ 0 + ▷ 1)∗▷ 1(▷ 0 + ▷ 1) ◁ (0 + 1) ▷ ◁.

The relational notation s ∼ t above for two bilat-
eral regular expressions s, t is not meant a kind of
similarity but just the equality of the languages ex-
pressed by them, e.g., ▷ (0 + 1)∗1(0 + 1) ◁ (0 + 1) ◁ =
(▷ 0 + ▷ 1)∗▷ 1(0 + 1) ◁ (0 + 1) ◁ can be verified in the
same way as described so far. Note that such s and
t correspond to so-called ‘mark-after’ automaton and
‘mark-before’ automaton, respectively in [20].

5. Applications of Bilaterally Colored Accep-
tance

5.1 Enhancement of Regular Expression Engines

In the previous section, we have seen that there exist a
bilateral finite automaton for a given bilateral regular
expression and vice versa. Based on these observations,
we have implemented a Unix-style biCRE simulator [25]
which is equipped with most basic features that any
regex engine might have (including support of repeated
concatenation quantifier {m,n}). By using this tool, we
assert that all the examples of (bilaterally colored or
not) regular expressions appearing in this paper cer-
tainly accord with their original intentions. Fig. 11† is
a code to demonstrate its usage for matching task of
the biCRE in Example 6.

Fig. 11 A programming example using the biCRE matching
engine built in Nim language for matching a bilateral colored
regular expression with fractional numbers and others simulta-
neously (See Example 6).

5.2 Simplification of Regular Right Part Context-Free
Grammar Parsers

In principle, we cannot obtain a complete solution for
the equations composed of rewriting rules of a context-
free grammar due to their inherently nonlinear recur-
sions. We can, however, simplify these equations by

†If the colors of languages accepted by biCFA trans-
formed from a given biCRE is guaranteed to be “unmixed”
[6, 7], we can adopt case statement instead of repetition of
if statements just as proposed in [14].

making use of the technique developed for bilateral reg-
ular expressions in case of context-free grammars whose
rewriting rules have star operators in their right side
bodies.

Example 11: A bilaterally colored extended (i.e.,
regular right part) context-free grammar for arithmetic
expressions with plus and multiplying operators is given
as follows. ▷1E → T{⊕T}∗◁1 = {T⊕}∗T◁1 = {T◁1⊕}∗ · · · (1)

▷2T → F{⊙F}∗◁2 = {F⊙}∗F◁2 = {F◁2⊙}∗ · · · (2)
▷3F → ([E]+ i) ◁3, · · · (3)

where E, T, F , and i represents the nonterminal vari-
ables for expressions, terms, factors, and identifiers,
respectively. The rightmost equalities of (1) and (2)
above are derived by the rule (Sa) of Definition 6.
From (3),

F = ▷3([E]+ i) ◁3.
Substituting it to (2),

▷2T → {▷3([E]+ i) ◁3◁2⊙}∗.
Then, we have

T = ▷2{▷3([E]+ i) ◁3◁2⊙}∗.
Substituting it to (1),

▷1E → {▷2{▷3([E]+ i) ◁3◁2⊙}∗◁1⊕}∗.
Therefore, we have

E → ▷1{▷2{▷3([E]+ i) ◁3◁2⊙}∗◁1⊕}∗.

By viewing a pair ▷, ◁ of state position symbols as
a pair of left and right parentheses, we observe in the
above that those and other ordinary parentheses {,} are
improperly nested (i.e., crossing each other).

We can directly translate the one-line grammar above
to an actual parser as shown in Fig. 12. The position
symbols ▷j ’s, ◁i’s and their eviction from star operators
are useful in this case just as in bilateral regular expres-
sion. For example, the derivation tree for a terminal
string a ⊙ b ⊕ c is explicitly visible in the sequence of
derivations as shown below.

E ⇒ ▷1{▷2{▷3([E]+ i)◁3◁2⊙}∗◁1⊕}∗
= ▷1{▷2{▷3([E]+ i)◁3◁2⊙}∗⊕}∗

{▷2{▷3([E]+ i)◁3◁2⊙}∗◁1}
= ▷1{▷2{▷3([E]+ i)◁3◁2⊙}∗⊕}∗

▷2{▷3([E]+ i)◁3◁2⊙}∗◁1
⇒ ▷1{▷2{▷3([E]+ i)◁3◁2⊙}∗⊕}

▷2{▷3([E]+ i)◁3◁2⊙}∗◁1
= ▷1▷2{▷3([E]+ i)◁3◁2⊙}∗⊕

▷2{▷3([E]+ i)◁3◁2⊙}∗◁1
⇒ ▷1▷2{▷3([E]+ i)◁3◁2⊙}∗⊕

▷2{▷3([E]+ i)◁3◁2}◁1
= ▷1▷2{▷3([E]+ i)◁3⊙}∗{▷3([E]+ i)◁3◁2}⊕

▷2▷3([E]+ i)◁3◁2◁1
⇒ ▷1▷2{▷3([E]+ i)◁3⊙}▷3([E]+ i)◁3◁2⊕

▷2▷3([E]+ i)◁3◁2◁1
= ▷1▷2▷3([E]+ i)◁3⊙ ▷3([E]+ i)◁3◁2⊕

▷2▷3([E]+ i)◁3◁2◁1
∗⇒ ▷1▷2▷3a ◁3⊙ ▷3b ◁3◁2⊕▷2▷3c ◁3◁2◁1.

10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Example 12: In the same way as Example 11, we
can obtain a bilaterally colored extended context-free
grammar

E → ▷1{▷2{▷3([E]+ i)◁3⊛◁3◁2}∗◁1⊕}∗

for ordinary regular expressions whose concatenating
operators are implicit (the symbol ⊛ denotes Kleene
star unary operator).

In fact, the parser module in the biCRE engine men-
tioned in the previous subsection was constructed based
on the one-line grammar described above (its final code
consists of about 100 lines).

Fig. 12 An arithmetic expression parser in Python lan-
guage which is directly translated from the grammar E →
▷1{▷2{▷3([E]+ i)◁3◁2⊙}∗◁1⊕}∗ with starting rule S → E$.

6. Summary and Further Research

This paper proposed new computational models, called
bilaterally colored finite automata and bilaterally col-
ored regular expressions whose powers of acceptance or
expressiveness are the same. Beyond the conventional
framework, these concepts give more compact repre-
sentations of set of regular languages and more flexi-
bility to designing of them, despite the fact that they
are entangled clusters of conventional models. Partic-
ularly, even mono-colored bilateral regular expression
has fair advantages worth the cost of new ingredients
of triangle-shaped symbols ‘▷’ and ‘◁’ : Thanks to the
omission of backward substitution step in the process
of Gaussian state elimination, it can be quickly derived
from a system of equations, which is equivalent to the
transition diagram of a finite automaton, then in most

cases the obtained expression is shorter than the ordi-
nary one, and its conversion to the form of ordinary ex-
pressions is rather laborious but merely a certain boiler-
plate routine in accordance with its definition. In fact,
we have straightforwardly built a tool that decomposes
biCRE into a tuple of ordinary regular expressions [25].

At the end of this paper, we propose future research
topics: (1) complete implementation of biCRE as pat-
tern matching engine, which currently lacks of con-
structs such as catching mechanism of matched sub-
string and (2) rigorous definitions (and their possible
proofs) of the newly introduced notions, such as a bi-
laterally colored extended context-free grammar in Sec-
tion 5.

Acknowledgements

We deeply thanks reviewers and editor for their valu-
able comments especially to the improvement of Defi-
nition 5, 6, and Fact 2.

References

[1] S. Yu, Regular languages, Handbook of Formal Languages
Vol. 1, pp. 43–110, Springer, 1997.

[2] D. Perrin, Finite automata, Handbook of Theoretical Com-
puter Science Vol. B, The MIT Press, pp. 1–57,1994.

[3] L. D. Antoni and M. Veanes, Symbolic automata better
balances how automata are implemented in practice, Com-
munication of the ACM 64, No. 5, pp. 86–95, 2021.

[4] S. T. O’Neil, A Primer for Computational Biology, Oregon
State University Press, 2017.

[5] K. N. Kumar and S. Sukumaran, A survey on network in-
trusion detection system techniques, International Journal
of Advanced Technology and Engineering Exploration, Vol.
5(47), pp. 385-393, 2018.

[6] Y. Takahashi and A. Ito, Finite Automata with Colored
Accepting States and Their Unmixedness Problems, IEICE
Transactions on Information and Systems, Vol. E 105-D,
No. 3, pp. 491–502, 2022.

[7] Y. Takahashi and A. Ito, On the Unmixedness Problems
of Colored Pushdown Automata, IEICE Transactions on
Information and Systems, Vol.E106-D, No. 3, pp. 303–308,
Mar. 2023.

[8] A. Asperti, C. S. Coen, and E. Tassi, Regular expressions,
au point. CoRRabs/1010.2604 (2010),
http://arxiv.org/abs/1010.2604.pdf (extracted 2024).

[9] A. Asperti, A compact proof of decidability for regular ex-
pression equivalence, LNCS 7406, pp. 283–298, Springer,
2012.

[10] T. Nipkow and D. Traytel, Unified decision procedures for
regular expression equivalence, LNCS 8558, pp. 450—466,
Springer, 2014.

[11] J. Sakarovitch, Automata and rational expressions, Hand-
book of Automata Theory, J.-E. Pin ed., EMS Publishing,
2021.

[12] J. E. Hopcroft, R. Motowani, and J. D. Ullman, Intoro-
duction to Automaton Theory, Languages, and Computa-
tion, Addison-Wesley Longman, 3rd ed, Pearson Education,
2007.

[13] J. A. Brzozowski, Derivatives of Regular Expressions, J.
ACM 11 (4), pp. 481–494, 1964.

[14] A. Ito and Y. Takahashi, Bilaterally Colored Finite Au-

ITO and TAKAHASHI: BILATERALLY COLORED FINITE AUTOMATA AND BILATERALLY COLORED REGULAR EXPRESSIONS
11

tomata and their Regular Expressions with Application to
Context-Free Parsing, to appear in Proceedings of 2024 the
3rd International Conference on Computer Technologies,
2024.

[15] D. C. Kozen, Automata and Computability, Springer Sci-
ence & Business Media, 2007.

[16] WHATWG.org, HTML Standard 4.10.5.1.5 Email state
(type=email), https://html.spec.whatwg.org/multipage/
input.html#email-state...1 (extracted 2024).

[17] H. Gruber and M. Holzer, From Finite Automata to Regu-
lar Expressions and Back ― A Summary on Descriptional
Complexity, Int. J. of Foundations of Computer Science 26
(08), pp. 1009–1040, 2015.

[18] M. V. Lawson, Finite Automata, CRC Press, 2004.
[19] J. Sakarovitch, Elements of Automata Theory, Cambridge

University Press, 2009.
[20] S. Broda, M. Holzer, E. Maia, N. Moreira, and R. Reis,

On the Mother of All Automata: the Position Automaton,
LNCS 10396, pp. 134–146, Springer, 2017.

[21] S. Fischer, F. Huch, and T. Wilke, A play on regular ex-
pressions: functional pearl, ACM SIGPLAN Notices, Vol.
45, pp. 357–368, 2010.

[22] A.V. Aho, et al., Compilers : principles, techniques, and
tools - 2nd ed., Pearson Education, 2007.

[23] A. Brüggemann-Klein, Regular expressions into finite au-
tomata, Theoretical Computer Science 120, pp. 197–213,
1993.

[24] V. Antimirov, Partial derivatives of regular expressions and
finite automaton constructions, Theoretical Computer Sci-
ence 155, pp. 291–319, 1996.

[25] A. Ito, biCREtools, GitHub repository, https://github.com
/ubeito/biCREtools (extracted 2024).

Akira Ito received the D.E. degrees
in Faculty of Engineering, Nagoya Uni-
versity in 1992. During 1983–2023, he
stayed in Faculty of Engineering, Yam-
aguchi University and is now an inde-
pendent researcher. Engaged in research
on automata, formal language, algorithm,
and complexity theory.

Yoshiaki Takahashi received the
M.E. degrees and D.E. degrees in Faculty
of Engineering, Yamaguchi University in
2008 and 2022, respectively. He is now an
associate professor at the National Insti-
tute of Technology, Oshima College. En-
gaged in research on automata and lan-
guage theory.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

