
DOI:10.1587/transinf.2024FCP0009

Publicized:2024/08/01

This advance publication article will be replaced by
the finalized version after proofreading.

IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
An FPT Algorithm for the Exact Matching Problem and
NP-hardness of Related Problems

Hitoshi MURAKAMI† and Yutaro YAMAGUCHI†, Nonmembers

SUMMARY The exact matching problem is a constrained variant of the
maximum matching problem: given a graph with each edge having a weight
0 or 1 and an integer 𝑘, the goal is to find a perfect matching of weight
exactly 𝑘. Mulmuley, Vazirani, and Vazirani (1987) proposed a randomized
polynomial-time algorithm for this problem, and it is still open whether it
can be derandomized. Very recently, El Maalouly, Steiner, and Wulf (2023)
showed that for bipartite graphs there exists a deterministic FPT algorithm
parameterized by the (bipartite) independence number. In this paper, by
extending a part of their work, we propose a deterministic FPT algorithm in
general parameterized by the minimum size of an odd cycle transversal in
addition to the (bipartite) independence number. We also consider a relaxed
problem called the correct parity matching problem, and show that a slight
generalization of an equivalent problem is NP-hard.
key words: Exact Matching Problem, Fixed-Parameter Tractability, Alter-
nating Cycles, Parity Constraint

1. Introduction

The maximum matching problem is a fundamental prob-
lem in combinatorial optimization: given a graph, the goal
is to find a matching of maximum size. This problem is
well-known to be polynomial-time solvable by deterministic
algorithms, initiated by Edmonds [3].

The exact matching problem (EM) is a constrained vari-
ant. We say that a graph is 0/1-weighted if each edge has
a weight 0 or 1, and define the weight of an edge subset (a
matching, a path, a cycle, etc.) as the sum of the weights of
edges in it. The problem is stated as follows.

Problem (Exact Matching (EM)):

Input: A 0/1-weighted graph 𝐺 and an integer 𝑘 .
Task: Determine whether 𝐺 has a perfect matching of

weight 𝑘 .

This problem was introduced by Papadimitriou and
Yannakakis [17], and is known to be polynomial-time solv-
able by a randomized algorithm proposed by Mulmuley,
Vazirani, and Vazirani [15]. It is, however, still widely
open whether there exists a deterministic polynomial-time
algorithm or not, although several special cases have been
solved, e.g., complete or comlete bipartite graphs [10,11,21],
𝐾3,3-minor-free graphs [22], and bounded-genus graphs [9].
There are also several research directions such as relax-
ation, approximation, and clarifying relations with other
problems [2,4,6,7,22]; see [5] for more details on its history.

†The authors are with Graduate School of Information Science
and Technology, Osaka University.

1.1 FPT Algorithms for Exact Matching Problem

For a parameter 𝑘 related to the input, a problem is said
to be fixed-parameter tractable (FPT) if there exists and a
computable function 𝑓 : Z → Z such that the problem can
be solved in 𝑓 (𝑘) · 𝑛𝑂 (1) time, where 𝑛 is the input size. We
also call an algorithm FPT (parameterized by 𝑘) if it admits
such a computational time bound.

Very recently, El Maalouly, Steiner, and Wulf [7] pro-
posed a deterministic FPT algorithm for EM in bipartite
graphs parameterized by the bipartite independence num-
ber. As the independence number of a graph is defined as
the maximum size of an independent set, the bipartite in-
dependence number of a bipartite graph is defined as the
maximum size of a balanced independent set divided by 2,
i.e., the maximum integer 𝛽 such that the bipartite graph ad-
mits an independent set of size 2𝛽 taking exactly 𝛽 vertices
from each color class. This result can be regarded as an ex-
tension of the solution for complete bipartite graphs, which
always have the bipartite independence number 0.

Theorem 1 (El Maalouly et al. [7]): The exact matching
problem in bipartite graphs can be solved by a deterministic
FPT algorithm parameterized by the bipartite independence
number.

Their result consists of two ingredients. One is an
FPT reduction of EM to a relaxed problem, the bounded
correct parity matching problem (BCPM) stated as follows,
parameterized by the independence number in general and
by the bipartite independence number for bipartite graphs.

Problem (Bounded Correct Parity Matching (BCPM)):

Input: A 0/1-weighted graph 𝐺 and an integer 𝑘 .
Task: Determine whether 𝐺 has a perfect matching of

weight 𝑘 ′ such that 𝑘 ′ ≤ 𝑘 and 𝑘 ′ ≡ 𝑘 (mod 2).

Theorem 2 (El Maalouly et al. [7]): The exact matching
problem can be reduced to the bounded correct parity match-
ing problem by a deterministic FPT algorithm parameterized
by the independence number in general and by the bipartite
independence number for bipartite graphs, where the input
graph does not change.

The other is a deterministic polynomial-time algorithm
for BCPM in bipartite graphs.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Theorem 3 (El Maalouly et al. [7]): There exists a deter-
ministic polynomial-time algorithm for the bounded correct
parity matching problem in bipartite graphs.

Their algorithm is based on a standard dynamic pro-
gramming approach for an equivalent problem. It seems
difficult to be generalized to general graphs (due to existence
of so-called blossoms), and it remains open whether BCPM
can be deterministically solved in polynomial time or not.

In this paper, we try to fill the gap between general
graphs and bipartite graphs by considering an odd cycle
transversal, which is a vertex subset intersecting all the odd
cycles in the graph, or equivalently, whose removal makes
the graph bipartite. Our results are stated as follows.

Theorem 4:

(1) The bounded correct parity matching problem can be
solved by a deterministic FPT algorithm parameterized
by the minimum size of an odd cycle transversal.

(2) The exact matching problem can be solved by a de-
terministic FPT algorithm parameterized by the inde-
pendence number plus the minimum size of an odd
cycle transversal. The independence number can be
sharpened as the bipartite independence number after
removing a minimum odd cycle transversal.

Since the empty set is an odd cycle transversal for any
bipartite graph, Theorem 4 extends Theorems 3 and 1.

1.2 On Correct Parity Matching Problem

We also consider a further relaxed problem, the correct parity
matching problem (CPM) stated as follows.

Problem (Correct Parity Matching (CPM)):

Input: A 0/1-weighted graph 𝐺 and an integer 𝑘 .
Task: Determine whether 𝐺 has a perfect matching of

weight 𝑘 ′ such that 𝑘 ′ ≡ 𝑘 (mod 2).
El Maalouly, Steiner, and Wulf [7] also proposed a

deterministic polynomial-time algorithm for this problem.
Their algorithm utilizes a linear algebraic trick with the aid
of Lovász’ algorithm [14] for finding a basis of the linear
subspace spanned by perfect matchings. It is elegant but
heavily depends on the fact that we are only interested in the
parity of the weight, and it seems difficult to obtain from it a
promising idea to tackle EM.

Let us consider a “purely graphic” approach to CPM,
which may give some hopeful idea for EM. We first find
a perfect matching 𝑀 . If the weight of 𝑀 has the same
parity as 𝑘 , we are done. Otherwise, we solve the odd
alternating cycle problem (OAC) stated as follows, where an
𝑀-alternating cycle is a simple cycle that alternates between
edges in 𝑀 and not in 𝑀 .

Problem (Odd Alternating Cycle (OAC)):

Input: A 0/1-weighted graph 𝐺 and a perfect matching 𝑀
in 𝐺.

Task: Determine whether 𝐺 has an 𝑀-alternating cycle of
odd weight.

It is not difficult to observe that the answers of the
original CPM instance and of the corresponding OAC in-
stance are the same. If there exists an 𝑀-alternating cycle
𝐶 of odd weight, then the symmetric difference 𝑀△𝐶 =

(𝑀 \ 𝐶) ∪ (𝐶 \ 𝑀) is a desired perfect matching (with its
parity different from 𝑀). Conversely, if there exists a perfect
matching 𝑀 ′ in 𝐺 with its parity different from 𝑀 , then the
symmetric difference 𝑀△𝑀 ′ forms disjoint 𝑀-alternating
cycles having an odd weight in total, which must contain at
least one 𝑀-alternating cycle of odd weight.

Thus, CPM and OAC are polynomial-time equivalent.
One natural way to solve OAC is testing for each edge 𝑒 ∈
𝑀 whether there exists such a cycle through 𝑒. We call
this subproblem the odd alternating cycle through an edge
problem (OACe), stated as follows.

Problem (Odd Alternating Cycle through an Edge (OACe)):

Input: A 0/1-weighted graph 𝐺, a perfect matching 𝑀 in
𝐺, and a matching edge 𝑒 ∈ 𝑀 .

Task: Determine whether 𝐺 has an 𝑀-alternating cycle of
odd weight and through 𝑒.

Unfortunately, this problem turns out NP-hard. This
result implies that, in order to solve CPM, we should search
an odd alternating cycle not locally but globally.

Theorem 5: The odd alternating cycle through an edge
problem is NP-hard even if the input graph is bipartite and
contains exactly one (matching) edge of weight 1.

The proof technique is based on a recent result of Schlot-
ter and Sebő [19] on the NP-hardness of finding a shortest
odd path between two specified vertices in an edge-weighted
undirected graph with no negative cycle.

1.3 Organization

The rest of this paper is organized as follows. In Section 2,
we describe necessary definitions. In Section 3, we prove
Theorem 4, and discuss heuristic speeding-up of our FPT
algorithm. In Section 4, we prove Theorem 5, and discuss
further related problems.

2. Preliminaries

For basic concepts, terms, and notation on graphs and algo-
rithms, see, e.g., [12, 20].

Let 𝐺 = (𝑉, 𝐸) be a graph with vertex set 𝑉 and
edge set 𝐸 , which is not necessarily simple. A (sim-
ple) path 𝑃 in 𝐺 is a connected subgraph (𝑉 (𝑃), 𝐸 (𝑃))
of 𝐺, defined by an alternating sequence of vertices and
edges (𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, . . . , 𝑣ℓ−1, 𝑒ℓ , 𝑣ℓ) such that all vertices
𝑣0, 𝑣1, . . . , 𝑣ℓ are distinct and 𝑒𝑖 = {𝑣𝑖−1, 𝑣𝑖} ∈ 𝐸 for each
𝑖 = 1, 2, . . . , ℓ, where 𝑉 (𝑃) = {𝑣0, 𝑣1, . . . , 𝑣ℓ } and 𝐸 (𝑃) =

{𝑒1, 𝑒2, . . . , 𝑒ℓ }. A (simple) cycle 𝐶 in 𝐺 is a connected

MURAKAMI and YAMAGUCHI: AN FPT ALGORITHM FOR THE EXACT MATCHING PROBLEM AND NP-HARDNESS OF RELATED PROBLEMS
3

subgraph (𝑉 (𝐶), 𝐸 (𝐶)) of 𝐺, defined by an alternating se-
quence of vertices (𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, . . . , 𝑣ℓ−1, 𝑒ℓ , 𝑣ℓ , 𝑒0, 𝑣0)
such that 𝑃 = (𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2, . . . , 𝑣ℓ−1, 𝑒ℓ , 𝑣ℓ) is a path
and 𝑒0 = {𝑣ℓ , 𝑣0} ∈ 𝐸 \ 𝐸 (𝑃), where 𝑉 (𝐶) = 𝑉 (𝑃) and
𝐸 (𝐶) = 𝐸 (𝑃) ∪ {𝑒0}. We also deal with paths and cy-
cles just as edge subsets or as vertex sequences (if there is no
confusion). For directed graphs, we define them analogously
by replacing undirected edges {𝑢, 𝑣} between 𝑢 and 𝑣 with
directed edges (𝑢, 𝑣) from 𝑢 to 𝑣.

A matching in 𝐺 is a subset of edges no two of which
share a vertex. A matching is said to be perfect if it covers
all vertices. A path or cycle is said to be 𝑀-alternating if it
alternates between edges in 𝑀 and not in 𝑀 .

An independent set in𝐺 is a subset of vertices no two of
which are adjacent in 𝐺. The maximum size of an indepen-
dent set in a graph is called the independence number. The
complement of an independent set is called a vertex cover,
i.e., for a vertex cover 𝑋 in 𝐺, any edge in 𝐺 is incident to
some vertex in 𝑋 .

A graph is said to be bipartite if there exists a (possibly
trivial) bipartition (𝐴, 𝐵) of its vertex set such that 𝐴 and 𝐵
are both independent sets. When we fix such a bipartition,
𝐴 and 𝐵 are called the color classes of the bipartite graph.
Then, a balanced independent set in the bipartite graph is
an independent set 𝑋 such that |𝑋 ∩ 𝐴| = |𝑋 ∩ 𝐵 |. The
maximum size of a balanced independent set in a bipartite
graph divided by 2 (i.e., counting the vertices in either color
class) is called the bipartite independence number. An odd
cycle transversal in𝐺 is a vertex subset 𝑋 such that𝐺 − 𝑋 is
bipartite, where 𝐺 − 𝑋 denotes the subgraph of 𝐺 obtained
by removing the vertices in 𝑋 with its incident edges.

3. An FPT Algorithm for Exact Matching Problem

3.1 Proof of Theorem 4

In this section, we prove Theorem 4.
Let𝐺 = (𝑉, 𝐸) be a 0/1-weighted graph, 𝑘 be an integer,

and 𝑋 ⊆ 𝑉 be an odd cycle transversal of 𝐺. Let (𝐴, 𝐵) be
a pair of the two color classes of 𝐺 − 𝑋 (if it is not unique,
fix an arbitrary one). For each subset 𝑌 ⊆ 𝑋 , we define a
bipartite graph 𝐺𝑌 = (𝐴 ∪ 𝑌, 𝐵 ∪ (𝑋 \ 𝑌); 𝐸𝑌) as follows,
which is a subgraph of 𝐺:

𝐸𝑌 ≔ { {𝑢, 𝑣} ∈ 𝐸 | 𝑢 ∈ 𝐴 ∪ 𝑌, 𝑣 ∈ 𝐵 ∪ (𝑋 \ 𝑌) }.

We then have the following lemma.

Lemma 6: (𝐺, 𝑘) is a yes-instance of BCPM (or EM) if
and only if (𝐺𝑌 , 𝑘) is a yes-instance of BCPM (or EM,
respectively) for some 𝑌 ⊆ 𝑋 .

Proof. Since each 𝐺𝑌 is a subgraph of 𝐺, if 𝐺𝑌 has a
desired perfect matching, then so does 𝐺.

Conversely, we show that, for any perfect matching 𝑀
in 𝐺, there exists a subset 𝑌 ⊆ 𝑋 such that 𝐺𝑌 has the same
perfect matching 𝑀 . Since 𝐴 and 𝐵 are both independent
sets in 𝐺 (as 𝐺 − 𝑋 is bipartite), each edge 𝑒 = {𝑢, 𝑣} ∈ 𝑀
satisfies |{𝑢, 𝑣} ∩ 𝐴| ≤ 1 and |{𝑢, 𝑣} ∩ 𝐵 | ≤ 1.

• If |{𝑢, 𝑣} ∩ 𝐴| = 1 and |{𝑢, 𝑣} ∩ 𝐵 | = 1, then 𝑒 always
exists in 𝐺𝑌 by definition.

• Suppose that |{𝑢, 𝑣} ∩ 𝐴| = 1 and |{𝑢, 𝑣} ∩ 𝐵 | = 0. By
symmetry, we assume 𝑢 ∈ 𝐴. In this case, 𝑒 ∈ 𝐸𝑌 if
and only if 𝑣 ∈ 𝑋 \ 𝑌 .

• Suppose that |{𝑢, 𝑣} ∩ 𝐴| = 0 and |{𝑢, 𝑣} ∩ 𝐵 | = 1. By
symmetry, we assume 𝑢 ∈ 𝐵. In this case, 𝑒 ∈ 𝐸𝑌 if
and only if 𝑣 ∈ 𝑌 .

• Suppose that |{𝑢, 𝑣} ∩ 𝐴| = 0 and |{𝑢, 𝑣} ∩ 𝐵 | = 0. In
this case, 𝑒 ∈ 𝐸𝑌 if and only if |{𝑢, 𝑣} ∩ 𝑌 | = 1.

Since 𝑀 is a matching, all the end vertices of the edges
in 𝑀 are distinct. Therefore, we can consider the above
conditions independently for each edge in 𝑀 , and then some
𝑌 ⊆ 𝑋 satisfies the conditions of 𝑒 ∈ 𝐸𝑌 for all the edges
𝑒 ∈ 𝑀 . Thus, we are done. □

By Lemma 6, we can solve BCPM by finding a mini-
mum odd cycle transversal 𝑋 and by solving BCPM in the
bipartite graphs 𝐺𝑌 for all subsets 𝑌 ⊆ 𝑋 , i.e., 2 |𝑋 | times.
Since a minimum odd cycle transversal can be found by deter-
ministic FPT algorithms parameterized by its size (initiated
by Reed, Smith, and Vetta [18]), combining with Theorem 3,
we obtain Theorem 4(1).

The first statement of Theorem 4(2) is an immediate
consequence of Theorem 2 and Theorem 4(1) applied in
this order. To see the second statement of Theorem 4(2),
let us swap the order, i.e., we first find a minimum odd
cycle transversal 𝑋 and apply Lemma 6, and then apply
Theorem 2 to each 𝐺𝑌 . We then obtain an algorithm for
EM, which is FPT parameterized by the maximum of the
bipartite independence numbers 𝛽𝑌 of 𝐺𝑌 plus |𝑋 |. As
shown below, for every 𝑌 ⊆ 𝑋 , the parameter 𝛽𝑌 is bounded
by the bipartite independence number 𝛽 of 𝐺 − 𝑋 plus |𝑋 |,
which concludes the second statement of Theorem 4(2).

Lemma 7: 𝛽𝑌 ≤ 𝛽 + |𝑋 | for any 𝑌 ⊆ 𝑋 .

Proof. Let 𝑍 be a maximum balanced independent set in
𝐺𝑌 . Then, 𝑍∩(𝐴∪𝐵) = (𝑍∩𝐴)∪ (𝑍∩𝐵) is an independent
set in 𝐺 − 𝑋 , which includes a balanced independent set of
size 2 min{|𝑍∩𝐴|, |𝑍∩𝐵 |} in𝐺−𝑋 . Also, as 𝑍 is balanced,
we have |𝑍 ∩ 𝐴| + |𝑍 ∩ 𝑌 | = |𝑍 ∩ 𝐵 | + |𝑍 ∩ (𝑋 \ 𝑌) |. Thus,

2𝛽𝑌 = |𝑍 |
= 2

(
min{|𝑍 ∩ 𝐴|, |𝑍 ∩ 𝐵 |}
+ max{|𝑍 ∩ 𝑌 |, |𝑍 ∩ (𝑋 \ 𝑌) |}

)
≤ 2(𝛽 + |𝑋 |). □

Remark 8: The bipartite independence number after re-
moving a minimum odd cycle transversal and the minimum
size of an odd cycle transversal are somewhat correlated,
but can behave arbitrarily. For example, by starting with a
bipartite graph with small bipartite independence number,
choosing a few vertices, and add many edges incident to
the chosen vertices, one can construct a graph with both
parameters small, for which our FPT algorithm works.

4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

3.2 Heuristic Speeding-Up

In this section, we consider heuristic speeding-up of the
algorithm of Theorem 4.

Let 𝐺 = (𝑉, 𝐸), 𝑘 , 𝑋 , and (𝐴, 𝐵) the same as the
beginning of Proof of Theorem 4, and let 𝑛 = |𝑉 |. We
assume that𝐺 has a perfect matching, since otherwise (𝐺, 𝑘)
is clearly a no-instance. For 𝑌 ⊆ 𝑋 , if |𝐴| + |𝑌 | ≠ 𝑛

2 , then
the bipartite graph 𝐺𝑌 has no perfect matching, and hence
(𝐺𝑌 , 𝑘) is a no-instance. Therefore, we can solve BCPM/EM
by solving BCPM/EM in the bipartite graphs 𝐺𝑌 for all
𝑌 ⊆ 𝑋 with |𝑌 | = 𝑛

2 − |𝐴|, i.e.,
(|𝑋 |
𝑛
2 −|𝐴|

)
times rather than 2 |𝑋 |

times. To make
(|𝑋 |
𝑛
2 −|𝐴|

)
small, we consider the following

problem, called the unbalanced bipartization problem (UB).

Problem (Unbalanced Bipartization (UB)):

Input: A graph 𝐺 having a perfect matching, and two inte-
gers 𝑘 and 𝑙.

Task: Determine whether 𝐺 has an odd cycle transversal
𝑋 ⊆ 𝑉 satisfies the following conditions:

– |𝑋 | ≤ 𝑘 .
– 𝐺 − 𝑋 has two color classes (𝐴, 𝐵) such that |𝐴| ≥

𝑛
2 − 𝑙.

Lemma 9: The unbalanced bipartization problem is NP-
hard.

Proof. We reduce to UB the odd cycle transversal problem
(OCT) stated as follows, which is NP-hard and admits FPT
algorithms parameterized by 𝑘 (initiated by [18]).

Problem (Odd Cycle Transversal (OCT)):

Input: A graph 𝐺 and an integer 𝑘 .
Task: Determine whether 𝐺 has an odd cycle transversal

𝑋 ⊆ 𝑉 of size at most 𝑘 .

If 𝐺 has a perfect matching, then the OCT instance
(𝐺, 𝑘) reduces to an UB instance (𝐺, 𝑘, 𝑛2). Thus, it suffices
to prove that OCT is NP-hard even if the input graph has a
perfect matching.

Suppose that we are given an OCT instance (𝐺 =

(𝑉, 𝐸), 𝑘), where 𝐺 does not necessarily have a perfect
matching. We define a graph 𝐺′ = (𝑉 ′, 𝐸 ′) as follows:

𝑉 ′ ≔ 𝑉 ∪ { 𝑣′ : 𝑣 ∈ 𝑉 },
𝐸 ′ ≔ 𝐸 ∪ { {𝑣, 𝑣′} : 𝑣 ∈ 𝑉 }.

Clearly, 𝐺′ has a perfect matching consisting of the
additional edges. Also, since the degree of each additional
vertex is 1, no cycle intersects them, and hence the two OCT
instances (𝐺, 𝑘) and (𝐺′, 𝑘) are equivalent. Thus, we are
done. □

If 𝑙 ≥ 𝑘
2 , then the UB instance (𝐺, 𝑘, 𝑙) is equivalent to

the OCT instance (𝐺, 𝑘) (|𝑋 | ≤ 𝑘 implies that |𝐴| ≥ 𝑛−𝑘
2 or

|𝐵 | ≥ 𝑛−𝑘
2). Thus, we assume 𝑙 < 𝑘

2 . A naı̈ve brute-force

algorithm for UB takes 𝑛𝑘+𝑂 (1) time. We can design an XP
algorithm with a better computational time bound as follows.

Lemma 10: The unbalanced bipartization problem can be
solved in 2.3146𝑘𝑛𝑙+𝑂 (1) time.

Proof. This proof is based on an FPT algorithm for OCT
parameterized by 𝑘 through a reduction to the unweighted
vertex cover problem (UVC) (cf. [1]).

Problem (Unweighted Vertex Cover (UVC)):

Input: A graph 𝐺 and an integer 𝑘 .
Task: Determine whether 𝐺 has a vertex cover of size at

most 𝑘 .

The weighted vertex cover problem (WVC) is a weighted
variant of UVC.

Problem (Weighted Vertex Cover (WVC)):

Input: A graph 𝐺, a vertex-weight function 𝑤 : 𝑉 → Z≥0,
and an integer 𝑘 .

Task: Determine whether 𝐺 has a vertex cover of weight
at most 𝑘 .

The proof is sketched as follows. We first reduce UB
to WVC, and then reduce WVC to UVC by the result of
Niedermeier and Rossmonith [16] (Lemma 11). Finally, we
solve UVC by an FPT algorithm proposed by Lokshtanov,
Narayanaswamy, Raman, Ramanujan, and Saurabh [13]
(Lemma 12).

Lemma 11 (Niedermeier and Rossmonith [16]): Let (𝐺 =

(𝑉, 𝐸), 𝑤, 𝑘) be a WVC instance. For each vertex 𝑣 ∈ 𝑉 ,
let 𝐶 (𝑣) be the set of 𝑤(𝑣) copies of 𝑣. We define a graph
�̃� = (�̃� , �̃�) as follows:

�̃� ≔
⋃
𝑣∈𝑉

𝐶 (𝑣),

�̃� ≔ { {�̃�, �̃�} : {𝑢, 𝑣} ∈ 𝐸, �̃� ∈ 𝐶 (𝑢), �̃� ∈ 𝐶 (𝑣) }.

Then, the WVC instance (𝐺, 𝑤, 𝑘) and the UVC instance
(�̃�, 𝑘) are equivalent.

Lemma 12 (Lokshtanov et al. [13]): There exists a deter-
ministic algorithm for UVC running in 2.3146𝑘−𝜇𝑛𝑂 (1) time,
where 𝜇 is the maximum size of a matching in the graph.

Suppose that we are given a UB instance 𝐺 = (𝑉, 𝐸),
𝑘 , and 𝑙. Let 𝑀 be a perfect matching in 𝐺. For each
subset 𝐹 ⊆ 𝑀 , we construct a corresponding WVC instance
(𝐺𝐹 , 𝑤𝐹 , 𝑘𝐹) as follows.

A graph 𝐺𝐹 = (𝑉𝐹 , 𝐸𝐹) is defined as follows, where
𝑉 (𝐹) denotes the set of end vertices of edges in 𝐹:

𝑉𝐹
1 ≔ { 𝑣1 : 𝑣 ∈ 𝑉 \𝑉 (𝐹) },
𝑉𝐹

2 ≔ { 𝑣2 : 𝑣 ∈ 𝑉 },
𝑉𝐹 ≔ 𝑉𝐹

1 ∪𝑉𝐹
2 ,

𝐸𝐹 ≔ { {𝑣1, 𝑣2} : 𝑣 ∈ 𝑉 \𝑉 (𝐹) }
∪ { {𝑢𝑖 , 𝑣𝑖} : {𝑢, 𝑣} ∈ 𝐸, 𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝐹

𝑖 , 𝑖 ∈ {1, 2} }.

MURAKAMI and YAMAGUCHI: AN FPT ALGORITHM FOR THE EXACT MATCHING PROBLEM AND NP-HARDNESS OF RELATED PROBLEMS
5

A vertex-weight function 𝑤𝐹 : 𝑉𝐹 → Z≥0 is defined as

𝑤𝐹 (𝑣) ≔
{
𝑘 + 1 (𝑣 ∈ 𝑉𝐹

1),
1 (𝑣 ∈ 𝑉𝐹

2).

Let us define

𝑘𝐹 =

(𝑛
2
− |𝐹 |

)
(𝑘 + 2) + 𝑘.

We then have the following lemma.

Lemma 13: (𝐺, 𝑘, 𝑙) is a yes-instance of UB if and only if
(𝐺𝐹 , 𝑤𝐹 , 𝑘𝐹) is a yes-instance of WVC for some 𝐹 ⊆ 𝑀

with |𝐹 | ≤ 𝑙.
Proof. Suppose that 𝐺 has a desired odd cycle transversal
𝑋 ⊆ 𝑉 . Then, 𝐺 − 𝑋 has two color classes (𝐴, 𝐵) such that
|𝐴| ≥ 𝑛

2 − 𝑙. Let 𝐹 = { 𝑒 : 𝑒 ∈ 𝑀, 𝑒 ∩ 𝐴 = ∅ }, 𝐴′ = { 𝑣1 :
𝑣 ∈ 𝐴 } ⊆ 𝑉𝐹

1 , and 𝐵′ = { 𝑣2 : 𝑣 ∈ 𝐵 } ⊆ 𝑉𝐹
2 . As 𝐴′ ∪ 𝐵′ is

an independent set in 𝐺𝐹 , its complement 𝑉𝐹 \ (𝐴′ ∪ 𝐵′) is
a vertex cover in𝐺𝐹 . Since |𝐴′ | = |𝐴| = |𝑀 | − |𝐹 | = 𝑛

2 − |𝐹 |
and |𝐵′ | = |𝐵 | = 𝑛 − |𝑋 | − |𝐴| ≥ 𝑛

2 − 𝑘 + |𝐹 |, its weight is

𝑤𝐹 (𝑉𝐹) − 𝑤𝐹 (𝐴′ ∪ 𝐵′)
= (|𝑉𝐹

1 | − |𝐴′ |) (𝑘 + 1) + |𝑉𝐹
2 | − |𝐵′ |

≤
(
(𝑛 − 2|𝐹 |) −

(𝑛
2
− |𝐹 |

))
(𝑘 + 1) + 𝑛 −

(𝑛
2
− 𝑘 + |𝐹 |

)
= 𝑘𝐹 .

Thus,𝑉𝐹 \ (𝐴′∪𝐵′) is a desired vertex cover. As |𝐴| ≥ 𝑛
2 −𝑙,

we have |𝐹 | = |𝑀 | − |𝐴| ≤ 𝑙.
Conversely, suppose that 𝐺𝐹 has a desired vertex cover

𝑋 for some 𝐹 ⊆ 𝑀 with |𝐹 | ≤ 𝑙. We first show that

|𝑋 ∩𝑉𝐹
1 | = 𝑛

2
− |𝐹 |. (1)

Since𝑉𝐹
1 has a perfect matching corresponding to𝑀\𝐹,

we have |𝑋 ∩ 𝑉𝐹
1 | ≥ 𝑛

2 − |𝐹 |. To derive a contradiction,
suppose that |𝑋∩𝑉𝐹

1 | > 𝑛
2 − |𝐹 |. Since𝑉𝐹

2 also has a perfect
matching corresponding to 𝑀 , we have |𝑋∩𝑉𝐹

2 | ≥ 𝑛
2 . Thus,

we obtain

𝑤𝐹 (𝑋) = 𝑤𝐹 (𝑋 ∩𝑉𝐹
1) + 𝑤𝐹 (𝑋 ∩𝑉𝐹

2)

≥
(𝑛

2
− |𝐹 | + 1

)
(𝑘 + 1) + 𝑛

2
= 𝑘𝐹 + |𝐹 | + 1,

which contradicts 𝑤𝐹 (𝑋) ≤ 𝑘𝐹 . Thus, we have (1).
From (1) and 𝑤𝐹 (𝑋) ≤ 𝑘𝐹 , we obtain

|𝑋 ∩𝑉𝐹
2 | ≤ 𝑘𝐹 − 𝑤𝐹 (𝑋 ∩𝑉𝐹

1) = 𝑛

2
− |𝐹 | + 𝑘. (2)

Let 𝑍 = 𝑉𝐹 \ 𝑋 , 𝐴′ = 𝑍 ∩ 𝑉𝐹
1 , and 𝐵′ = 𝑍 ∩ 𝑉𝐹

2 . Let
𝐴 and 𝐵 denote the vertex subsets in 𝐺 corresponding to 𝐴′

and 𝐵′, respectively. We show that 𝑉 \ (𝐴 ∪ 𝐵) is a desired
odd cycle transversal in the UB instance (𝐺, 𝑘, 𝑙).

Since 𝑋 is a vertex cover in 𝐺𝐹 , its complement 𝑍 is
an independent set in 𝐺𝐹 . Since 𝐺𝐹 has an edge {𝑣1, 𝑣2} for

every 𝑣 ∈ 𝑉 \𝑉 (𝐹), we have 𝐴 ∩ 𝐵 = ∅. In addition, both 𝐴
and 𝐵 are independent sets in𝐺, and hence𝑉 \ (𝐴∪ 𝐵) is an
odd cycle transversal in 𝐺. From (1) and |𝐹 | ≤ 𝑙, we obtain

|𝐴| = |𝑉𝐹
1 | − |𝑋 ∩𝑉𝐹

1 | = 𝑛

2
− |𝐹 | ≥ 𝑛

2
− 𝑙.

Combined with (2), we have

|𝑉 \ (𝐴 ∪ 𝐵) | = |𝑉 | − |𝐴| − |𝐵 |
= |𝑉 | − |𝐴| − (|𝑉𝐹

2 | − |𝑋 ∩𝑉𝐹
2 |)

≤ 𝑛 −
(𝑛

2
− |𝐹 |

)
−
(
𝑛 −

(𝑛
2
− |𝐹 | + 𝑘

))
= 𝑘.

Thus, 𝑉 \ (𝐴 ∪ 𝐵) is a desired odd cycle transversal. □

By Lemma 13, we can solve a UB instance (𝐺, 𝑘, 𝑙) by
solving the WVC instances (𝐺𝐹 , 𝑤, 𝑘𝐹) for all subsets 𝐹 ⊆
𝑀 with |𝐹 | ≤ 𝑙, i.e.,𝑂 (𝑛𝑙) times. By Lemma 11, we can de-
fine the corresponding UVC instance (�̃�𝐹 = (�̃�𝐹 , �̃�𝐹), 𝑘𝐹)
as follows:

�̃�𝐹 ≔
⋃
𝑣∈𝑉𝐹

𝐶 (𝑣),

�̃�𝐹 ≔ { {�̃�, �̃�} : {𝑢, 𝑣} ∈ 𝐸𝐹 , �̃� ∈ 𝐶 (𝑢), �̃� ∈ 𝐶 (𝑣) }.

As 𝐺𝐹 has a perfect matching 𝑀𝐹 = { {𝑢1, 𝑣1} :
{𝑢, 𝑣} ∈ 𝑀 \ 𝐹 } ∪ { {𝑢2, 𝑣2} : {𝑢, 𝑣} ∈ 𝑀 }, �̃�𝐹 has a
corresponding perfect matching �̃�𝐹 . By Lemma 12, we can
solve each UVC instance (𝐺′

𝐹
, 𝑘𝐹) in 2.3146𝑘𝐹−|�̃�𝐹 |𝑛𝑂 (1)

time, where

𝑘𝐹 − |�̃�𝐹 |

=

(𝑛
2
− |𝐹 |

)
(𝑘 + 2) + 𝑘 −

((𝑛
2
− |𝐹 |

)
(𝑘 + 1) + 𝑛

2

)
= 𝑘 − |𝐹 |
≤ 𝑘.

Thus, we are done. □

4. NP-hardness of Related Problems

4.1 Proof of Theorem 5

In this section, we prove Theorem 5. The proof is similar to
that of [19, Theorem 4.3]. We reduce to OACe the back and
forth paths problem (BFP) stated as follows, which is known
to be NP-hard [8].

Problem (Back and Forth Paths (BFP)):

Input: A directed graph 𝐺 and two vertices 𝑠 and 𝑡.
Task: Determine whether 𝐺 has a simple cycle that con-

tains both 𝑠 and 𝑡.

Suppose that we are given a BFP instance 𝐺 = (𝑉, 𝐸)
and 𝑠, 𝑡 ∈ 𝑉 . We construct the corresponding OACe instance,
i.e., a 0/1-weighted graph �̂� = (�̂� , �̂�), a perfect matching
�̂� , and 𝑒 ∈ �̂� as follows.

6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

We split each 𝑣 ∈ 𝑉 into two vertices, in-copy 𝑣− and
out-copy 𝑣+. For each directed edge (𝑢, 𝑣) ∈ 𝐸 , we create
an edge {𝑢+, 𝑣−} of weight 0. For each vertex 𝑣 ∈ 𝑉 , we
create an edge {𝑣− , 𝑣+}, whose weight is 1 if 𝑣 = 𝑡 and 0
otherwise. Define �̂� as those edges {𝑣− , 𝑣+} (𝑣 ∈ 𝑉), and
let 𝑒 be {𝑠− , 𝑠+}. To sum up, we define

�̂� ≔ { 𝑣− : 𝑣 ∈ 𝑉 } ∪ { 𝑣+ : 𝑣 ∈ 𝑉 },
�̂� ≔ { {𝑢+, 𝑣−} : (𝑢, 𝑣) ∈ 𝐸 } ∪ { {𝑣− , 𝑣+} : 𝑣 ∈ 𝑉 },
�̂� ≔ { {𝑣− , 𝑣+} : 𝑣 ∈ 𝑉 },
𝑒 ≔ {𝑠− , 𝑠+},

where only {𝑡− , 𝑡+} has weight 1 . Note that this construction
satisfies the additional conditions (bipartiteness and unique-
ness of an edge of weight 1) in Theorem 5.

We show that there exists a simple cycle containing 𝑠
and 𝑡 in 𝐺 if and only if there exists an �̂�-alternating cycle
of odd weight through 𝑒 = {𝑠− , 𝑠+} in �̂�.

Suppose that there exists a simple cycle 𝐶 =

(𝑠, 𝑣1, 𝑣2, . . . , 𝑡, . . . , 𝑣ℓ , 𝑠) containing 𝑠 and 𝑡 in 𝐺.
Then, there exists a corresponding simple cycle �̂� =

(𝑠− , 𝑠+, 𝑣−1 , 𝑣
+
1 , 𝑣

−
2 , 𝑣

+
2 , . . . , 𝑡

− , 𝑡+, . . . , 𝑣−
ℓ
, 𝑣+

ℓ
, 𝑠−) in �̂�, which

is clearly �̂�-alternating, of weight 1 (due to the edge
{𝑡− , 𝑡+}), and through 𝑒 = {𝑠− , 𝑠+}.

Conversely, suppose that there exists an �̂�-alternating
cycle �̂� of odd weight through 𝑒 = {𝑠− , 𝑠+} in �̂�. Since
{𝑡− , 𝑡+} is the only edge having weight 1, it must be tra-
versed by �̂�. In addition, since the graph �̂� is bipartite and
the two color classes correspond to the signs, �̂� alternately
intersects 𝑢− and 𝑣+ for some vertices 𝑢, 𝑣 ∈ 𝑉 . That is, �̂�
is a form of (𝑠− , 𝑠+, 𝑣−1 , 𝑣

+
1 , 𝑣

−
2 , 𝑣

+
2 , . . . , 𝑡

− , 𝑡+, . . . , 𝑣−
ℓ
, 𝑣+

ℓ
, 𝑠−),

and hence there exists a corresponding simple cycle 𝐶 =

(𝑠, 𝑣1, 𝑣2, . . . , 𝑡, . . . , 𝑣ℓ , 𝑠) in 𝐺. Thus, we are done.

4.2 Further Related Problems

In this section, we discuss several more problems related to
OACe.

For a matching 𝑀 , an 𝑀-augmenting path is a simple
path between two unmatched vertices that alternates between
edges in 𝑀 and not in 𝑀 . This is an elementary but crucial
structure in the maximum matching problem. In particular,
a matching 𝑀 is not of maximum size if and only if there
exists an 𝑀-augmenting path.

OACe reduces to the odd augmenting path problem
(OAP) stated as follows; thus, OAP is also NP-hard.

Problem (Odd Augmenting Path (OAP)):

Input: A 0/1-weighted graph 𝐺 and a matching 𝑀 in 𝐺.
Task: Determine whether𝐺 has an 𝑀-augmenting path of

odd weight.

Lemma 14: OACe reduces to OAP.

Proof. Suppose that we are given an OACe instance, i.e.,
a 0/1-weighted graph 𝐺 = (𝑉, 𝐸), a perfect matching 𝑀 ,
and a matching edge 𝑒 = {𝑢, 𝑣} ∈ 𝑀 . Consider a graph

𝐺′ = (𝑉, 𝐸 \ {𝑒}) and a matching 𝑀 ′ = 𝑀 \ {𝑒} in 𝐺′. In
addition, if the weight of 𝑒 is 1, then we switch the weight
(change it from 0 to 1 and from 1 to 0) of every edge incident
to 𝑢 in𝐺′. Then,𝐺 has an 𝑀-alternating cycle of odd weight
and through 𝑒 if and only if 𝐺′ has an 𝑀 ′-augmenting path
of odd weight. The former is indeed transformed into the
latter just by removing 𝑒 (note that both traverse exactly one
edge incident to 𝑢 in 𝐺′, which preserves the parity of their
weights). Also, since 𝑢 and 𝑣 are the only unmatched vertices
with respect to 𝑀 ′, the latter is transformed into the former
by adding 𝑒. Thus, we are done. □

The proof and Theorem 5 imply the following.

Corollary 15: The odd augmenting path problem is NP-
hard even if the input graph is bipartite and contains exactly
one (matching) edge of weight 1 and the input matching is
of size 𝑛

2 − 1, where 𝑛 is the number of vertices.

OAP with this additional conditions reduces to the dis-
joint augmenting path problem (DAP) stated as follows; thus,
DAP is also NP-hard.

Problem (Disjoint Augmenting Path (DAP)):

Input: A graph 𝐺, a matching 𝑀 in 𝐺, and unmatched
vertices 𝑠1, 𝑠2, 𝑡1, 𝑡2.

Task: Determine whether 𝐺 has disjoint 𝑀-augmenting
paths between {𝑠1, 𝑠2} and {𝑡1, 𝑡2}.

The reduction is easy. Let 𝑠1, 𝑠2 be the original un-
matched vertices, let 𝑡1, 𝑡2 be the end vertices of the unique
matching edge 𝑒 of weight 1, and remove 𝑒.

Corollary 16: The disjoint augmenting path problem is
NP-hard even if the input graph is bipartite.

In contrast, a relaxed problem, the free disjoint
augmenting path problem (FDAP) stated as follows, is
polynomial-time solvable.

Problem (Free Disjoint Augmenting Path (FDAP)):

Input: A graph 𝐺, a matching 𝑀 in 𝐺, and unmatched
vertices 𝑠1, 𝑠2, 𝑡1, 𝑡2.

Task: Determine whether 𝐺 has disjoint 𝑀-augmenting
paths with end vertices in {𝑠1, 𝑠2, 𝑡1, 𝑡2}.

Lemma 17: FDAP can be solved by a deterministic
polynomial-time algorithm.

Proof. Let 𝐺′ be a subgraph of 𝐺 obtained by removing
the unmatched vertices other than 𝑠1, 𝑠2, 𝑡1, 𝑡2. If 𝐺′ has a
perfect matching 𝑀 ′, then the symmetric difference 𝑀△𝑀 ′

contains desired disjoint 𝑀-augmenting paths. Conversely,
if 𝐺 contains desired disjoint 𝑀-augmenting paths, so does
𝐺′, which implies that 𝐺′ has a perfect matching. Thus, it
suffices to solve the maximum matching problem in 𝐺′, for
which a deterministic polynomial-time algorithm exists. □

Acknowledgments

The authors are grateful to anonymous reviewers for their

MURAKAMI and YAMAGUCHI: AN FPT ALGORITHM FOR THE EXACT MATCHING PROBLEM AND NP-HARDNESS OF RELATED PROBLEMS
7

helpful comments. The second author was supported by
JSPS KAKENHI Grant Numbers 20K19743 and 20H00605.

References

[1] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algo-
rithms. Springer, 2015.

[2] A. Dürr, N. El Maalouly, and L. Wulf. An approximation algorithm
for the exact matching problem in bipartite graphs. In Proceedings
of the 26th International Conference on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX 2023), No. 18,
21pp., 2023.

[3] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathe-
matics, 17 (1965), pp. 449–467.

[4] N. El Maalouly. Exact matching: algorithms and related problems.
In Proceedings of the 40th International Symposium on Theoretical
Aspects of Computer Science (STACS 2023), No. 29, 17pp., 2023.

[5] N. El Maalouly, S. Haslebacher, and L. Wulf. On the exact matching
problem in dense graphs. arXiv:2401.03924, 2024.

[6] N. El Maalouly and R. Steiner. Exact matching in graphs of bounded
independence number. In Proceedings of the 47th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS
2022), No. 46, 14pp., 2022.

[7] N. El Maalouly, R. Steiner, and L. Wulf. Exact matching: correct par-
ity and FPT parameterized by independence number. In Proceedings
of the 34th International Symposium on Algorithms and Computation
(ISAAC 2023), No. 28, 18pp., 2023.

[8] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph home-
omorphism problem. Theoretical Computer Science, 10 (1980),
pp. 111–121.

[9] A. Galluccio and M. Loebl. On the theory of Pfaffian orientations. I.
Perfect matchings and permanents. Electronic Journal of Combina-
torics, 6 (1999), R6, 19pp.

[10] H.-F. Geerdes and J. Szabó. A unified proof for Karzanov’s exact
matching theorem. EGRES Quick Proofs, No. 2011-02, 6pp., 2011.

[11] A. V. Karzanov. Maximum matching of given weight in complete
and complete bipartite graphs. Cybernetics, 23 (1987), pp. 8–13.

[12] B. Korte and J. Vygen. Combinatorial Optimization: Theory and
Algorithms. 6th Ed., Springer, 2018.

[13] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanu-
jan, and S. Saurabh. Faster parameterized algorithms using linear
programming. ACM Transactions on Algorithms, 11 (2014), No. 15,
31pp.

[14] L. Lovász. Matching structure and the matching lattice. Journal of
Combinatorial Theory, Series B, 43 (1987), pp. 187–222.

[15] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy
as matrix inversion. Combinatorica, 7 (1987), pp. 105–113.

[16] R. Niedermeier and P. Rossmonith. On efficient fixed-parameter al-
gorithms for weighted vertex cover. Journal of Algorithms, 47 (2003),
pp. 63–77.

[17] C. H. Papadimitriou and M. Yannakakis. The complexity of restricted
spanning tree problem. Journal of the ACM, 29 (1982), pp. 285–309.

[18] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals.
Operations Research Letters, 32 (2004), pp. 299–301.

[19] I. Schlotter and A. Sebő. Odd paths, cycles and 𝑇-joins: connections
and algorithms. arXiv:2211.12862, 2022.

[20] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003.

[21] T. Yi, K. G. Murty, and C. Spera. Matchings in colored bipartite
networks. Discrete Applied Mathematics, 121 (2002), pp. 261–277.

[22] R. Yuster. Almost exact matching. Algorithmica, 63 (2012),
pp. 39–50.

Hitoshi Murakami is a master’s program
student of Osaka University. He received the
B.E. degree from Tokyo University of Agricul-
ture and Technology in 2022.

Yutaro Yamaguchi is an Associate Profes-
sor of Osaka University. He received the mas-
ter’s degree of Science from Kyoto University in
2013, and the Ph.D. degree in the field of Math-
ematical Informatics from University of Tokyo
in 2016. His research interests include the the-
ory of combinatorial optimization and discrete
algorithms.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

