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Strategies and Equilibria on Indistinguishability of Winning
Objectives and Related Decision Problems∗

Rindo NAKANISHI†a), Nonmember, Yoshiaki TAKATA††b), Member, and Hiroyuki SEKI†c), Fellow

SUMMARY Game theory on graphs is a basic tool in computer sci-
ence. In this paper, we propose a new game-theoretic framework for
studying the privacy protection of a user who interactively uses a soft-
ware service. Our framework is based on the idea that an objective of
a user using software services should not be known to an adversary be-
cause the objective is often closely related to personal information of the
user. We propose two new notions, O-indistinguishable strategy (O-IS)
and objective-indistinguishability equilibrium (OIE). For a given game and
a subset O of winning objectives (or objectives in short), a strategy of a
player is O-indistinguishable if an adversary cannot shrink O by excluding
any objective from O as an impossible objective. A strategy profile, which
is a tuple of strategies of all players, is an OIE if the profile is locally optimal
in the sense that no player can expand her set of objectives indistinguishable
from her real objective from the viewpoint of an adversary. We analyze the
complexities of deciding the existence of O-IS and prove the decidability
of the existence of OIE under a weaker assumption on rationality.
key words: graph game, Muller objective, O-indistinguishable strategy,
objective-indistinguishability equilibrium

1. Introduction

Indistinguishability is a basic concept in security and privacy,
meaning that anyone who does not have the access right to
secret information cannot distinguish a target secret data
from other data. For example, a cryptographic protocol
may be considered secure if the answer from an adversary
who tries to attack the protocol is indistinguishable from a
random sequence [1]. A database is 𝑘-anonymous if we
cannot distinguish a target record from at least 𝑘 − 1 records
whose public attribute values are the same as those of the
target record [2].

In this paper, we apply indistinguishability to defining
and solving problems on privacy of a user who interacts with
other users and/or software tools. The basic idea of this study
is that we consider an objective of a user should not be public
because the objective is often closely related to personal
information of the user. For example, users of e-commerce
websites may select products to purchase depending on their
preference, income, health condition, etc., which are related
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to private information of the users; hence, they may not
want the target products to become public unnecessarily. In
this study, we try to formalize the above idea based on the
indistinguishability of objectives from the viewpoint of an
adversary who may observe the user’s behavior.

We adopt a multiplayer non-zero-sum game played on
a game arena, which is a finite directed graph with the initial
vertex [3], [4], as our basic framework. A game has been
used as the framework of reactive synthesis problem [5],
[6]. It is natural to require that a reactive system acting as
an agent of a human user should not unnecessarily make the
user’s privacy public, and this paper proposes a framework
for capturing the suitability of the behavior of a player (which
may be a synthesized reactive system) when we consider the
user’s objective is private information.

One of the main concerns in game theory is to decide
whether there is a winning strategy for a given player 𝑝 and
if so, to construct a winning strategy for 𝑝. A strategy of
player 𝑝 is a function that selects a next move of 𝑝 based on
the current position or the history of a play. A strategy 𝜎 of
a player 𝑝 is called a winning strategy if the player 𝑝 always
wins by using 𝜎, i.e., any play consistent with the strategy 𝜎
satisfies her winning objective regardless of the other play-
ers’ strategies. From the viewpoint of reactive synthesis, a
winning strategy for a designated player represents the be-
havior of the synthesized system that satisfies its objective
regardless of the behaviors of the other environmental enti-
ties. Note that there may be more than one winning strategies
for a player; she can choose any one among such winning
strategies. In the literatures, a winning objective is a priori
given as a component of a game. In this study, we regard
that a winning objective of a player is her private informa-
tion and hence she wants to choose a winning strategy that
maximizes the indistinguishability of her winning objective
from the viewpoint of an adversary who may observe the
play and recognize which players win the game. For a sub-
set O of winning objectives which a player 𝑝 wants to be
indistinguishable from one another, we say that a strategy
of 𝑝 is O-indistinguishable if an adversary cannot make O
smaller as the candidate set of winning objectives. The paper
discusses the decidability and complexity of some problems
related to O-indistinguishability.

Another important problem in game theory is to find
a good combination of strategies of all players, which pro-
vides a locally optimal play. A well-known criterion is Nash
equilibrium. A combination of strategies (called a strategy
profile) is a Nash equilibrium if any player losing the game in
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Fig. 1 1-player game arena with a Büchi objective

that strategy profile cannot make herself a winner by chang-
ing her strategy alone. This paper introduces objective-
indistinguishability equilibrium (OIE) as a criterion of local
optimality of a strategy profile; a strategy profile is OIE if
and only if no player can extend the indistinguishable set of
winning objectives by changing her strategy alone. An OIE
shares good properties with other kind of equilibria. If a
combination of strategies is an OIE, then every player can
protect her privacy in a locally optimal way in the sense that
any player cannot extend the candidate set of winning objec-
tives (as her privacy) by unilaterally changing her strategy.
The paper also provides the decidability results on OIE.

Example 1.1: Figure 1 shows a 1-player game. The player
is a spy. Alice is her buddy. The player wants to com-
municate with Alice many times and she does not want an
adversary to find out that Alice is her buddy. In this game,
the objective of the player is to visit the accepting vertex
Alice infinitely often. Visiting a vertex corresponds to com-
municating with the person written on that vertex.

We assume that an adversary knows the game arena,
the play and whether the player wins. We also assume that
an adversary knows the objective of the player is a Büchi
objective†. We examine the following three strategies of the
player, all of which result in the player’s winning.

1. Always choose Alice as the next vertex, i.e., the play
will be Alice Alice Alice · · · . In this case, the player wins
because she visits Alice infinitely often. An adversary
knows that at least Alice is an accepting vertex because
the player won and she visited only Alice infinitely often.

2. Choose Bob as the next vertex when the player is in
Alice, and Alice when the player is in Bob, i.e., the play
will be Alice Bob Alice Bob · · · . In this case, the player
wins and an adversary knows that at least one of Alice
and Bob is an accepting vertex. Compared to the case 1,
the vertex Bob is added to the candidate set of accepting
vertices.

3. Choose Bob as the next vertex when the player is
in Alice, Chris when the player is in Bob, and Alice
when the player is in Chris, i.e., the play will be

†A Büchi objective defined in Definition 2.2 in Section 2 is
specified by a set of accepting vertices. If the play visits an ac-
cepting vertex infinitely often, then the player wins. Otherwise, the
player loses.

𝑞0 𝑞1

𝑞2 𝑞3

Fig. 2 1-player game arena with a Streett objective

Alice Bob Chris Alice · · · . In this case, the player wins
and an adversary knows that at least one of Alice, Bob
and Chris is an accepting vertex. Compared to the case
2, the vertex Chris is added to the candidate set of ac-
cepting vertices.

Example 1.2: Figure 2 shows a 1-player game. The player
is a web server. If the player receives a request from a
user infinitely often, the player should send HTML files
to the user infinitely often. Visiting the vertex 𝑞0, shown
as a rectangle, corresponds to receiving a request from a
user, and visiting the vertex 𝑞3, shown as a double circle,
corresponds to sending HTML files to the user. Hence, the
server satisfies her objective if (and only if) the play visits 𝑞3
infinitely often whenever it visits 𝑞0 infinitely often, which
is a typical liveness property. An adversary guesses the
objective of the player. As the same as Example 1.1, assume
that an adversary knows the game arena, the play, whether
the player wins, and the fact that the objective of the player
is a Streett objective††. For example, when the player visits
all vertices infinitely often, an adversary only knows that at
least one of 𝑞0, 𝑞1, 𝑞2 and 𝑞3 is a send vertex. When the
player visits only 𝑞1 and 𝑞3 infinitely often, an adversary
knows that at least one of 𝑞1 and 𝑞3 is a send vertex or at
least one of 𝑞0 and 𝑞2 is a request vertex.

Related work

There is a generalization of games where each player can
only know partial information on the game, which is called
an imperfect information game [7]–[11]. While the indis-
tinguishability proposed in this paper shares such restricted
observation with imperfect information games, the large dif-
ference is that we consider an adversary who is not a player
but an individual who observes partial information on the
game while players themselves may obtain only partial in-
formation in imperfect information games.

Among a variety of privacy notions, 𝑘-anonymity is
well-known. A database 𝐷 is 𝑘-anonymous [2], [12] if for
any record 𝑟 in 𝐷, there are at least 𝑘 − 1 records different
from 𝑟 such that the values of quasi-identifiers of 𝑟 and

††A Streett objective defined in Definition 2.2 in Section 2 is
specified by a set of pairs (𝐹𝑘 , 𝐺𝑘 ) of vertices 𝐹𝑘 and 𝐺𝑘 (1 ≤
𝑘 ≤ 𝑛). If the play visits a vertex in 𝐺𝑘 infinitely often or the
play does not visit any vertices of 𝐹𝑘 infinitely often for all pairs
(𝐹𝑘 , 𝐺𝑘 ) (1 ≤ 𝑘 ≤ 𝑛), then the player wins. Otherwise, the player
loses.
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these records are the same. Here, a set of quasi-identifiers
is a subset of attributes that can ‘almost’ identify the record
such as {zip-code, birthday, income}. Hence, if 𝐷 is 𝑘-
anonymous, an adversary knowing the quasi-identifiers of
some user 𝑢 cannot identify the record of 𝑢 in 𝐷 among
the 𝑘 records with the same values of the quasi-identifiers.
Methods for transforming a database to the one satisfying 𝑘-
anonymity have been investigated [13], [14]. Refined notions
have been proposed by considering the statistical distribution
of the attribute values [15], [16].

However, these notions suffer from so called non-
structured zero and mosaic effect. Actually, it is known
that there is no way of protecting perfect privacy from an
adversary who can use an arbitrary external information ex-
cept the target privacy itself. The notion of 𝜀-differential
privacy where 𝜀 > 0 was proposed to overcome the weak-
ness of the classical notions of privacy. A query 𝑄 to a
database 𝐷 is 𝜀-differentially private (abbreviated as 𝜀-DP)
[17], [18] if for any person 𝑢, the probability that we can
infer whether the information on 𝑢 is contained in 𝐷 or not
by observing the result of 𝑄(𝐷) is negligible (very small)
in terms of 𝜀. (Also see [19], [20].) As the privacy pro-
tection of individual information used in data mining and
machine learning is becoming a serious social problem [21],
methods of data publishing that guarantees 𝜀-DP have been
extensively studied [21]–[25].

Quantitative information flow (abbreviated as QIF)
[26], [27] is another way of formalizing privacy protection
or information leakage. QIF of a program 𝑃 is the mutual
information of the secret input 𝑋 and the public output 𝑌
of the program 𝑃 in the sense of Shannon theory where the
channel between 𝑋 and 𝑌 is a program which has logical se-
mantics. Hence, QIF analysis uses not only the calculation
of probabilities but also program analysis [28].

We have mentioned a few well-known approaches to
formally modeling privacy protection in software systems;
however, these privacy notions, even QIF that is based on
the logical semantics of a program, share the assumption
that private information is a static value or a distribution of
values. In contrast, our approach assumes that privacy is a
purpose of a user’s behavior. The protection of this kind of
privacy has not been studied to the best of our knowledge. In
[29], the following synthesis problem of privacy preserving
systems is discussed: For given multivalued linear-time tem-
poral logic (LTL) formulas representing secrets as well as an
LTL formula representing a specification, decide whether
there is a reactive program that satisfies the specification
while keeping the values of the formulas representing se-
crets unknown. The paper [29] treats the secrets as values
as in the previous studies, and the approach is very different
from ours.

This paper is an extended version of [30]. There are
two major differences from [30]. First, we improved the
definitions of the functions Obj𝑝,𝑂𝑝

Ω,knw defined in Section 3,
which are the key parts in our framework. Second, under
the above new definitions, we analyzed the complexities of

Table 1 The complexities of Problem 4.1
pw, gw or pgw pg

Büchi or coNP (b2) P-complete (a1) (b1)co-Büchi P-hard (a1)

Streett PSPACE (b3) coNP-complete (a2) (b2)coNP-hard (a2)
Rabin PSPACE-complete (a3) (b3) PSPACE-complete (a3) (b3)

Muller EXPTIME (b4) P-complete (a1) (b1)P-hard (a1)

the existences of O-IS defined in Section 3 for which only
decidability was proved in [30]. The complexities are sum-
marized in Table 1 where row headers are classes of objec-
tives defined in Section 2 and column headers are types of
information that an adversary can use defined in Section 3.
Obj𝑝,𝑂𝑝

Ω,knw intuitively represents the set of candidate objectives
of player 𝑝 an adversary can guess. Both in [30] and this
paper, we regard that an adversary assumes the players be-
have rationally and use this assumption to guess the players’
objectives. It is assumed in [30] that when a player is a loser,
there is no winning strategy for the player. However, when
a player is a winner, we asymmetrically made no assump-
tion on the player’s rationality in [30]. Hence, in [30], an
adversary assumed a player behaved rationally when she lost
while the adversary did not assume so when the player won,
which is not a balanced definition.

2. Preliminaries

Definition 2.1: A game arena is a tuple G =
(𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸), where 𝑃 is a finite set of players,𝑉 is
a finite set of vertices, (𝑉𝑝)𝑝∈𝑃 is a partition of 𝑉 , namely,
𝑉𝑖 ∩𝑉 𝑗 = ∅ for all 𝑖 ≠ 𝑗 (𝑖, 𝑗 ∈ 𝑃) and

∪
𝑝∈𝑃 𝑉𝑝 = 𝑉 , 𝑣0 ∈ 𝑉

is the initial vertex, and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges.

As defined later, a vertex in 𝑉𝑝 is controlled by a player
𝑝, i.e., when a play is at a vertex in 𝑉𝑝 , the next vertex is
selected by player 𝑝. This type of games is called turn-based.
There are other types of games, concurrent games [7] and
stochastic game [31]–[33]. In this paper, we consider only
deterministic turn-based games.

Play and history

An infinite sequence of vertices 𝑣0𝑣1𝑣2 · · · (𝑣𝑖 ∈ 𝑉, 𝑖 ≥ 0)
starting from the initial vertex 𝑣0 is a play if (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸
for all 𝑖 ≥ 0. A history is a non-empty (finite) prefix of
a play. The set of all plays is denoted by Play and the
set of all histories is denoted by Hist. We often write a
history as ℎ𝑣 where ℎ ∈ Hist ∪ {𝜀} and 𝑣 ∈ 𝑉 . For a
player 𝑝 ∈ 𝑃, let Hist𝑝 = {ℎ𝑣 ∈ Hist | 𝑣 ∈ 𝑉𝑝}. That is,
Hist𝑝 is the set of histories ending with a vertex controlled
by player 𝑝. For a play 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play, we define
Inf (𝜌) = {𝑣 ∈ 𝑉 | ∀𝑖 ≥ 0. ∃ 𝑗 ≥ 𝑖. 𝑣 𝑗 = 𝑣}.
Strategy

For a player 𝑝 ∈ 𝑃, a strategy of 𝑝 is a function 𝜎𝑝 :
Hist𝑝 → 𝑉 such that (𝑣, 𝜎𝑝 (ℎ𝑣)) ∈ 𝐸 for all ℎ𝑣 ∈ Hist𝑝 .
At a vertex 𝑣 ∈ 𝑉𝑝 , player 𝑝 chooses 𝜎𝑝 (ℎ𝑣) as the next
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vertex according to her strategy 𝜎𝑝 . Note that because the
domain of 𝜎𝑝 is Hist𝑝 , the next vertex may depend on the
whole history in general. Let Σ𝑝

G denote the set of all strate-
gies of 𝑝. A strategy profile is a tuple 𝝈 = (𝜎𝑝)𝑝∈𝑃 of
strategies of all players, namely 𝜎𝑝 ∈ Σ𝑝

G for all 𝑝 ∈ 𝑃.
Let ΣG denote the set of all strategy profiles. For a strategy
profile 𝝈 ∈ ΣG and a strategy 𝜎′

𝑝 ∈ Σ𝑝
G of a player 𝑝 ∈ 𝑃,

let 𝝈[𝑝 ↦→ 𝜎′
𝑝] denote the strategy profile obtained from 𝝈

by replacing the strategy of 𝑝 in 𝝈 with 𝜎′
𝑝 . We define the

function outG : ΣG → Play as outG ((𝜎𝑝)𝑝∈𝑃) = 𝑣0𝑣1𝑣2 · · ·
where 𝑣𝑖+1 = 𝜎𝑝 (𝑣0 · · · 𝑣𝑖) for all 𝑖 ≥ 0 and for 𝑝 ∈ 𝑃
with 𝑣𝑖 ∈ 𝑉𝑝 . We call the play outG (𝝈) the outcome
of 𝝈. We also define the function out𝑝G : Σ𝑝

G → 2Play

for each 𝑝 ∈ 𝑃 as out𝑝G (𝜎𝑝) = {𝑣0𝑣1𝑣2 · · · ∈ Play |
𝑣𝑖 ∈ 𝑉𝑝 ⇒ 𝑣𝑖+1 = 𝜎𝑝 (𝑣0 · · · 𝑣𝑖) for all 𝑖 ≥ 0}. A play 𝜌 ∈
out𝑝G (𝜎𝑝) is called a play consistent with the strategy 𝜎𝑝 of
player 𝑝. By definition, for a strategy profile 𝝈 = (𝜎𝑝)𝑝∈𝑃 ∈
ΣG , it holds that

∩
𝑝∈𝑃 out𝑝G (𝜎𝑝) = {outG (𝝈)}.

Objective

In this paper, we assume that the result that a player obtains
from a play is either a winning or a losing. Each player has
her own winning condition over plays, and we represent a
winning condition by a subset 𝑂 ⊆ Play of plays; i.e., the
player wins if the play belongs to the subset 𝑂. We call the
subset 𝑂 the objective of that player. In this paper, we focus
on the following important classes of objectives.

Definition 2.2: Let 𝑈 ⊆ 𝑉 be a subset of vertices,
(𝐹𝑘 , 𝐺𝑘 )1≤𝑘≤𝑙 be pairs of sets 𝐹𝑘 , 𝐺𝑘 ⊆ 𝑉 and F ⊆ 2𝑉 be a
subset of subsets of vertices. We will use 𝑈, (𝐹𝑘 , 𝐺𝑘 )1≤𝑘≤𝑙
and F as finite representations for specifying an objective as
follows.

• Büchi objective:
Büchi(𝑈) = {𝜌 ∈ Play | Inf (𝜌) ∩𝑈 ≠ ∅}.

• co-Büchi objective:
co-Büchi(𝑈) = {𝜌 ∈ Play | Inf (𝜌) ∩𝑈 = ∅}.

• Rabin objective:
Rabin

(
(𝐹𝑘 , 𝐺𝑘 )1≤𝑘≤𝑙

)
= {𝜌 ∈ Play |

1 ≤ ∃𝑘 ≤ 𝑙. Inf (𝜌) ∩ 𝐹𝑘 = ∅ ∧ Inf (𝜌) ∩ 𝐺𝑘 ≠ ∅}.
• Streett objective:

Streett
(
(𝐹𝑘 , 𝐺𝑘 )1≤𝑘≤𝑙

)
= {𝜌 ∈ Play |

1 ≤ ∀𝑘 ≤ 𝑙. Inf (𝜌) ∩ 𝐹𝑘 ≠ ∅ ∨ Inf (𝜌) ∩ 𝐺𝑘 = ∅}.
• Muller objective:

Muller(F) = {𝜌 ∈ Play | Inf (𝜌) ∈ F }.
Note that each objective defined in Definition 2.2 is also a
Muller objective: For example, for any 𝑈 ⊆ 𝑉 , Büchi(𝑈) =
Muller({𝐼 ⊆ 𝑉 | 𝐼 ∩ 𝑈 ≠ ∅}), and for any (𝐹𝑘 , 𝐺𝑘 )1≤𝑘≤𝑙
where 𝐹𝑘 , 𝐺𝑘 ⊆ 𝑉 , Rabin ((𝐹𝑘 , 𝐺𝑘 )1≤𝑘≤𝑙) = Muller(F)
where F =

∪
1≤𝑘≤𝑙{𝐼 ⊆ 𝑉 | 𝐼 ∩ 𝐹𝑘 = ∅∧ 𝐼 ∩𝐺𝑘 ≠ ∅}. We

define the description length of a Muller objective Muller(F)
for F ⊆ 2𝑉 is |𝑉 | · |F |, because each element of F , which
is a subset of 𝑉 , can be represented by a bit vector of length
|𝑉 |.† By Ω ⊆ 2Play, we refer to a certain class of objectives.
For example, Ω = {Büchi(𝑈) | 𝑈 ⊆ 𝑉} ⊆ 2𝑃𝑙𝑎𝑦 is the class

†Translating a representation of a Büchi objective into that

of Büchi objectives.
An objective profile is a tuple 𝜶 = (𝑂 𝑝)𝑝∈𝑃 of objec-

tives of all players, namely 𝑂 𝑝 ⊆ Play for all 𝑝 ∈ 𝑃. A pair
(G,𝜶) of a game arena and an objective profile is called a
game. For a strategy profile 𝝈 ∈ ΣG and an objective profile
𝜶 = (𝑂 𝑝)𝑝∈𝑃 , we define the set WinG (𝝈,𝜶) ⊆ 𝑃 of winners
as WinG (𝝈,𝜶) = {𝑝 ∈ 𝑃 | outG (𝝈) ∈ 𝑂 𝑝}. That is, a player
𝑝 is a winner if and only if outG (𝝈) belongs to the objective
𝑂 𝑝 of 𝑝. If 𝑝 ∈ WinG (𝝈,𝜶), we also say that 𝑝 wins the
game (G,𝜶) (by the strategy profile 𝝈). Note that it is possi-
ble that there is no player who wins the game or all the players
win the game. In this sense, a game is non-zero-sum. If an
objective profile 𝜶 = (𝑂 𝑝)𝑝∈𝑃 is a partition of Play, i.e.,
𝑂𝑖 ∩ 𝑂 𝑗 = ∅ for all 𝑖 ≠ 𝑗 (𝑖, 𝑗 ∈ 𝑃) and

∪
𝑝∈𝑃 𝑂 𝑝 = Play,

then the game is called zero-sum. When a game is zero-sum,
there is one and only one winner and the other players are
all losers. We abbreviate Σ𝑝

G , ΣG , out𝑝G , outG and WinG as
Σ𝑝 , Σ, out𝑝 , out and Win, respectively, if G is clear from the
context.

Winning strategy

For a game arena G, a player 𝑝 ∈ 𝑃 and an objective 𝑂 𝑝 ⊆
Play, a strategy 𝜎𝑝 ∈ Σ𝑝 of 𝑝 such that out𝑝 (𝜎𝑝) ⊆ 𝑂 𝑝 is
called a winning strategy of 𝑝 forG and𝑂 𝑝 because if 𝑝 takes
𝜎𝑝 as her strategy then she wins against any combination of
strategies of the other players. (Recall that out𝑝 (𝜎𝑝) ⊆ Play
is the set of all plays consistent with 𝜎𝑝 .) Hence, a strategy
for 𝑝 such that her winning or losing depends on which
strategies other players choose is not a winning strategy for
𝑝. For a game arena G and a player 𝑝 ∈ 𝑃, we define the set
Winnable𝑝G of objectives permitting 𝑝 a winning strategy as
Winnable𝑝G = {𝑂 | ∃𝜎𝑝 ∈ Σ𝑝

G . out𝑝G (𝜎𝑝) ⊆ 𝑂}. For a player
𝑝, 𝑂 ∈ Winnable𝑝G means that 𝑝 has a winning strategy for
G and 𝑂. We have the following problem and theorem for a
winning strategy.

Problem 2.1: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena, 𝑝 ∈ 𝑃 be a player and 𝑂 𝑝 ⊆ Play be an objective of
𝑝. Decide whether there exists a winning strategy of 𝑝 for
𝑂 𝑝 .

Theorem 2.1 ([3, Theorems 21 and 25]): If a given game
is a 2-player zero-sum game, i.e., |𝑃 | = 2 and a given objec-
tive profile is a partition of Play, then Problem 2.1 is

(1) P-complete when 𝑂 𝑝 is a Büchi, co-Büchi or Muller
objective or an intersection of Büchi objectives,

(2) NP-complete when 𝑂 𝑝 is a Rabin objective,
(3) co-NP complete when 𝑂 𝑝 is a Streett objective and
(4) PSPACE-complete when 𝑂 𝑝 is an intersection of Ra-

bin objectives or is a Boolean combination of Büchi
objectives.

Theorem 2.1 (1) implies that the complexity of Prob-
lem 2.1 is smaller when 𝑂 𝑝 is a Muller objective than 𝑂 𝑝 is
a Rabin or Streett objective, despite the fact that both of the

of a Muller objective may cause an exponential blowup in the
description length.
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class of Rabin objectives and that of Streett objectives are
subclasses of Muller objectives. This is because a Muller
objective is given in an explicit way, i.e., a Muller objec-
tive is a subset of subsets of vertices that should be visited
infinitely often.

We can apply Theorem 2.1 to multiplayer non-zero-
sum games by regarding them as 2-player zero-sum games
as follows: for a player 𝑝 ∈ 𝑃 in a multiplayer non-zero-
sum game, we let the other player −𝑝 be the coalition of the
players 𝑞 ∈ 𝑃 \ {𝑝} whose objective is the complement of
the objective of 𝑝. We have the following theorem.

Theorem 2.2: Problem 2.1 is

(1) P-complete when 𝑂 𝑝 is a Büchi, co-Büchi or Muller
objective or an intersection of Büchi objectives,

(2) NP-complete when 𝑂 𝑝 is a Rabin objective,
(3) co-NP complete when 𝑂 𝑝 is a Streett objective and
(4) PSPACE-complete when 𝑂 𝑝 is an intersection of Ra-

bin objectives or is a Boolean combination of Büchi
objectives.

Nash equilibrium

For non-zero-sum multiplayer games, besides a winning
strategy of each player, we often use Nash equilibrium,
defined below, as a criterion for a strategy profile (a tu-
ple of strategies of all players) to be locally optimal. Let
𝝈 ∈ Σ be a strategy profile and 𝜶 = (𝑂 𝑝)𝑝∈𝑃 be an objec-
tive profile. A strategy profile 𝝈 is called a Nash equilib-
rium (NE) for 𝜶 if it holds that ∀𝑝 ∈ 𝑃. ∀𝜎𝑝 ∈ Σ𝑝 . 𝑝 ∈
Win(𝝈[𝑝 ↦→ 𝜎𝑝],𝜶) ⇒ 𝑝 ∈ Win(𝝈,𝜶). Intuitively, 𝝈
is an NE if any player 𝑝 cannot improve the result (from
losing to winning) by changing her strategy alone. For a
strategy profile 𝝈 ∈ Σ, we call a strategy 𝜎𝑝 ∈ Σ𝑝 such
that 𝑝 ∉ Win(𝝈,𝜶) ∧ 𝑝 ∈ Win(𝝈[𝑝 ↦→ 𝜎𝑝],𝜶) a prof-
itable deviation of 𝑝 from 𝝈. Hence, 𝝈 is an NE if and
only if no player has a profitable deviation from 𝝈. Because
𝑝 ∈ Win(𝝈,𝜶) is equivalent to out(𝝈) ∈ 𝑂 𝑝 , a strategy
profile 𝝈 ∈ Σ is an NE for 𝜶 if and only if ∀𝑝 ∈ 𝑃. ∀𝜎𝑝 ∈
Σ𝑝 . out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ 𝑂 𝑝 ⇒ out(𝝈) ∈ 𝑂 𝑝 . We write
this condition as Nash(𝝈,𝜶).

Below we define an extension of NE as a single strategy
profile simultaneously satisfying the condition of NE for
more than one objective profiles. We can prove that the
existence of this extended NE is decidable (Theorem 2.3),
and later we will reduce some problems to the existence
checking of this type of NE.

Definition 2.3: For a game arenaG = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸)
and objective profiles 𝜶1, . . . ,𝜶𝑛, a strategy profile 𝝈 ∈ Σ
is called an (𝜶1, . . . ,𝜶𝑛)-Nash equilibrium if Nash(𝝈,𝜶 𝑗 )
holds for all 1 ≤ 𝑗 ≤ 𝑛.

Theorem 2.3: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena and 𝜶 𝑗 = (𝑂 𝑗

𝑝)𝑝∈𝑃 (1 ≤ 𝑗 ≤ 𝑛) be objective
profiles over Muller objectives. Whether there exists an
(𝜶1, . . . ,𝜶𝑛)-NE is decidable.

A proof of this theorem is given in the appendix.

3. Indistinguishable Strategy and Related Equilibrium

In this section, we propose two new notions concerning
on the privacy of a player: indistinguishable strategy and
objective-indistinguishability equilibrium. We first define
the set of possible objectives of a player in the viewpoint
of an adversary that can observe restricted information on a
game, a play and its result (i.e., which players win).

We assume that an adversary guesses objectives of play-
ers from the three types of information: a play (p), a game
arena (g) and a set of winners (w) of the play. We use a
word knw ∈ {pw, gw, pg, pgw} to represent a type of infor-
mation that an adversary can use. For example, an adversary
guesses objectives from a play and winners when knw = pw.
In either case, we implicitly assume that an adversary knows
the set 𝑉 of vertices of the game arena and the class Ω of
objectives of players. We do not consider the cases where
knw is a singleton because in such cases the information an
adversary can have is too limited to make useful inference
about the objectives: An adversary cannot guess anything
about objectives when knw = g or knw = p. When knw = w,
he only knows that the objective of a winner is not empty
and that of a loser is not the universal set.

Let 𝑝 ∈ 𝑃 be a player and 𝑂 𝑝 ⊆ Play be an objective
of 𝑝. We define the function Obj𝑝,𝑂𝑝

Ω,knw : Σ → 2Ω as follows,
which maps a strategy profile 𝝈 ∈ Σ to the set of objectives
of 𝑝 that an adversary guesses. Note that 𝑝 ∈ Win(𝝈,𝜶) is
equivalent to out(𝝈) ∈ 𝑂 𝑝 and hence we let Obj𝑝,𝑂𝑝

Ω,knw have a
parameter 𝑂 𝑝 instead of 𝜶. (Two types of underlines in the
following equations show the parts that correspond to player
𝑝’s rationality, explained later.)

Obj𝑝,𝑂𝑝

Ω,pw (𝝈) = {𝑂 ⊆ 𝑉𝜔 |
(out(𝝈) ∈ 𝑂 ∧ 𝑝 ∈ Win(𝝈,𝜶)) ∨
(out(𝝈) ∉ 𝑂 ∧ 𝑝 ∉ Win(𝝈,𝜶))},

Obj𝑝,𝑂𝑝

Ω,gw (𝝈) = {𝑂 ∈ Ω |
(𝑝 ∈ Win(𝝈,𝜶) ∧𝑂 ≠ ∅∧
(𝑂 ∈ Winnable𝑝 ⇒ out𝑝 (𝜎𝑝) ⊆ 𝑂)) ∨
(𝑝 ∉ Win(𝝈,𝜶) ∧𝑂 ∉ Winnable𝑝

::::::::::::
)},

Obj𝑝,𝑂𝑝

Ω,pg (𝝈) = {𝑂 ∈ Ω |
(out(𝝈) ∈ 𝑂∧
(𝑂 ∈ Winnable𝑝 ⇒ out𝑝 (𝜎𝑝) ⊆ 𝑂)) ∨
(out(𝝈) ∉ 𝑂 ∧𝑂 ∉ Winnable𝑝

::::::::::::
)},

Obj𝑝,𝑂𝑝

Ω,pgw (𝝈) = {𝑂 ∈ Ω |
(out(𝝈) ∈ 𝑂 ∧ 𝑝 ∈ Win(𝝈,𝜶)∧
(𝑂 ∈ Winnable𝑝 ⇒ out𝑝 (𝜎𝑝) ⊆ 𝑂)) ∨
(out(𝝈) ∉ 𝑂 ∧ 𝑝 ∉ Win(𝝈,𝜶)∧
𝑂 ∉ Winnable𝑝
::::::::::::

)}
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where 𝜶 is any objective profile in which the objective of 𝑝
is 𝑂 𝑝 and 𝜎𝑝 is the strategy of 𝑝 in 𝝈 = (𝜎𝑝)𝑝∈𝑃 . (Note
that for a given 𝝈 whether 𝑝 ∈ Win(𝝈,𝜶) or not does not
depend on objectives of the players other than 𝑝 and hence
we can use an arbitrary 𝜶 containing 𝑂 𝑝 .)

The definitions of Obj𝑝,𝑂𝑝

Ω,knw are based on the following
two ideas. First, if a player 𝑝 wins in a play 𝜌, then her
objective 𝑂 𝑝 contains 𝜌. This is obvious from the definition
of the winning condition of the game. Similarly, if 𝑝 loses in
𝜌, then 𝑂 𝑝 does not contain 𝜌. Second, we assume that if a
player has a winning strategy for her objective and the game
arena, then she takes a winning strategy. In other words, we
assume that each player behaves rationally. The conditions
for 𝑂 due to the assumption that a player behaves rationally
when she is a winner (resp. loser) are underlined with solid
lines (resp. wavy lines) in the definition of Obj𝑝,𝑂𝑝

Ω,knw.
When knw = pw, we assume that an adversary can

observe the play and the set of winners but he does not know
the game arena. The adversary can infer that the play out(𝝈)
he observed belongs to the objective of a player 𝑝 if the
adversary knows that 𝑝 is a winner, and out(𝝈) does not
belong to the objective of 𝑝 if 𝑝 is not a winner. Note that
the adversary does not know the real objective 𝑂 𝑝 of player
𝑝. For the adversary, any 𝑂 ⊆ 𝑉𝜔 satisfying out(𝝈) ∈ 𝑂 is
a candidate of the objective of player 𝑝 when 𝑝 is a winner.
Similarly, any 𝑂 ⊆ 𝑉𝜔 satisfying out(𝝈) ∉ 𝑂 is a candidate
objective of 𝑝 when 𝑝 is not a winner. An adversary does
not know the game arena because knw = pw, that is, he
does not know the set of edges in the arena. Therefore, the
candidate objective 𝑂 cannot be narrowed down to a subset
of plays (i.e., infinite sequences of vertices along the edges
in the game arena), but 𝑂 can be an arbitrary set of infinite
sequences of the vertices consistent with the information
obtained by the adversary.

When knw = gw, an adversary cannot observe the play,
but he knows the game arena and can observe the set of
winners. If 𝑝 is a winner, the adversary can infer that 𝑝 has
a strategy 𝜎′

𝑝 such that out𝑝 (𝜎′
𝑝) ∩𝑂 𝑝 ≠ ∅. Because there

exists such a strategy 𝜎′
𝑝 for all 𝑂 𝑝 other than ∅, he can

remove only ∅ from the set of candidates for 𝑝’s objective.
In addition, if a candidate objective𝑂 of 𝑝 for the game arena
has a winning strategy and 𝑝’s strategy 𝜎𝑝 of 𝝈 = (𝜎𝑝)𝑝∈𝑃
is not a winning strategy for 𝑂, then 𝑂 must not be a real
objective of 𝑝 and the adversary can exclude 𝑂 from the
set of candidate objectives, because we assume that every
player takes a winning strategy for her objective when one
exists. In other words, if 𝑂 has a winning strategy, then 𝑂

is in Obj𝑝,𝑂𝑝

Ω,gw (𝝈) only if 𝜎𝑝 is a winning strategy for 𝑂.
On the other hand, if 𝑝 is a loser, the adversary can infer
that 𝑝 has no winning strategy for 𝑂 𝑝 for the same reason.
Therefore, when 𝑝 loses, the adversary can narrow down the
set of candidates for 𝑝’s objective to the set of objectives
without a winning strategy.

The definition where knw = pg can be interpreted in a
similar way. Note that we have

𝑣0

𝑣1 𝑣2

Fig. 3 1-player game arena with Büchi objectives

Obj𝑝,𝑂𝑝

Ω,pgw (𝝈) = Obj𝑝,𝑂𝑝

Ω,pw (𝝈)∩Obj𝑝,𝑂𝑝

Ω,gw (𝝈)∩Obj𝑝,𝑂𝑝

Ω,pg (𝝈).

Since 𝑝 ∈ Win(𝝈,𝜶) is equivalent to out(𝝈) ∈ 𝑂 𝑝 as
mentioned before, the above definitions can be rephrased as
follows:

Obj𝑝,𝑂𝑝

Ω,pw (𝝈) = {𝑂 ⊆ 𝑉𝜔 |

out(𝝈) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)},

Obj𝑝,𝑂𝑝

Ω,gw (𝝈) = {𝑂 ∈ Ω |
(𝑂 ∈Winnable𝑝⇒(out(𝝈) ∈𝑂 𝑝∧out𝑝 (𝜎𝑝) ⊆𝑂))
∧ (𝑂 ∉ Winnable𝑝 ⇒ (𝑂 ≠ ∅ ∨ out(𝝈) ∉ 𝑂 𝑝))}

Obj𝑝,𝑂𝑝

Ω,pg (𝝈) = {𝑂 ∈ Ω |
𝑂 ∈Winnable𝑝⇒(out(𝝈) ∈𝑂 ∧ out𝑝 (𝜎𝑝) ⊆𝑂)},

Obj𝑝,𝑂𝑝

Ω,pgw (𝝈) = {𝑂 ∈ Ω |

out(𝝈) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝) ∧
(𝑂 ∈ Winnable𝑝 ⇒
(out(𝝈) ∈ 𝑂 ∩𝑂 𝑝 ∧ out𝑝 (𝜎𝑝) ⊆ 𝑂))}.

The reader may wonder why 𝑂 𝑝 appears in this (alternative)
definition in spite of the assumption that the adversary does
not know 𝑂 𝑝 . The condition out(𝝈) ∈ 𝑂 𝑝 (or ∉ 𝑂 𝑝) only
means that the adversary knows whether 𝑝 is a winner (or a
loser) without knowing 𝑂 𝑝 itself.

Example 3.1: Figure 3 shows a 1-player game arena
G = ({1}, 𝑉, (𝑉), 𝑣0, 𝐸) where 𝑉 = {𝑣0, 𝑣1, 𝑣2} and 𝐸 =
{(𝑣0, 𝑣1), (𝑣0, 𝑣2), (𝑣1, 𝑣1), (𝑣2, 𝑣2)}. We specify a Büchi ob-
jective by a set of accepting states, e.g., let ⟨𝑣1⟩ denote
Büchi({𝑣1}) = {𝜌 ∈ 𝑉𝜔 | Inf (𝜌) ∩ {𝑣1} ≠ ∅}. In this exam-
ple, we assume the objective of player 1 is ⟨⟩ = ∅ ⊆ Play.
Therefore, player 1 always loses regardless of her strategy.
There are only two strategies 𝜎1 and 𝜎2 of player 1. The
strategy 𝜎1 takes the vertex 𝑣1 as the next vertex at the initial
vertex 𝑣0 and then keeps looping in 𝑣1. On the other hand,
the strategy 𝜎2 takes 𝑣2 at 𝑣0 and then keeps looping in 𝑣2.
Let 𝜎1 be the strategy player 1 chooses. We have the play
𝜌 = out(𝜎1) = 𝑣0𝑣1𝑣1𝑣1 · · · .

We assume that an adversary knows that the objective
of player 1 is a Büchi objective. Then, for each type of
information knw ∈ {pw, gw, pg, pgw}, Obj1,∅Büchi,knw (𝜎1) be-
comes as follows (we regard the strategy 𝜎1 of player 1 as
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𝑣0

𝑣1 𝑣2

Fig. 4 1-player game arena a with Büchi objective

the strategy profile 𝝈 = (𝜎𝑝)):
• If knw = pw, then an adversary can deduce that
𝑣1 is not an accepting state because he knows that
Inf (𝑣0𝑣1𝑣1 · · · ) = {𝑣1} and player 1 loses. Therefore,
we have Obj1,∅Büchi,pw (𝜎1) = {⟨⟩, ⟨𝑣0⟩, ⟨𝑣2⟩, ⟨𝑣0, 𝑣2⟩}.
Note that in this game arena, there is no play passing
𝑣0 infinitely often, and thus ⟨⟩ and ⟨𝑣0⟩ (resp. ⟨𝑣2⟩
and ⟨𝑣0, 𝑣2⟩) are equivalent actually. However, be-
cause an adversary does not know the game arena when
knw = pw, he should consider every infinite sequence
over𝑉 would be a play and thus ⟨⟩ and ⟨𝑣0⟩ are different
for him when knw = pw. In the other cases where an
adversary knows the game arena, he also knows e.g.
⟨⟩ and ⟨𝑣0⟩ are equivalent and thus he would consider
Ω = {⟨⟩, ⟨𝑣1⟩, ⟨𝑣2⟩, ⟨𝑣1, 𝑣2⟩}.

• If knw = gw, then an adversary can deduce that nei-
ther 𝑣1 nor 𝑣2 is an accepting state because player
1 loses in spite of the fact that there are strategies
that pass through 𝑣1 or 𝑣2 infinitely often. Therefore,
Obj1,∅Büchi,gw (𝜎1) = {⟨⟩}. That is, an adversary can infer
the complete information.

• If knw = pg, then an adversary can deduce that ⟨𝑣2⟩
does not belong to Obj1,∅Büchi,pg (𝜎1) because player 1 did
not take 𝜎2 to pass through 𝑣2 infinitely often. That is,
if ⟨𝑣2⟩ were the objective of player 1, then it meant she
chose losing strategy 𝜎1 instead of winning strategy
𝜎2, which is unlikely to happen. Therefore, we have
Obj1,∅Büchi,pg (𝜎1) = {⟨⟩, ⟨𝑣1⟩, ⟨𝑣1, 𝑣2⟩}.

• If knw = pgw, we have

Obj1,∅Büchi,pgw (𝜎1) =
∩

knw∈{pw,gw,pg}
Obj1,∅Büchi,knw (𝜎1) = {⟨⟩}.

O-indistinguishable strategy

Definition 3.1: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena, 𝜎𝑝 ∈ Σ𝑝 be a strategy of 𝑝 ∈ 𝑃, Ω ⊆ 2Play be one of
the classes of objectives defined in Definition 2.2,𝑂 𝑝 ∈ Ω be
an objective of 𝑝 and knw ∈ {pw, gw, pg, pgw} be a type of
information that an adversary can use. For any set O ⊆ 2Play

of objectives such that O ⊆ ∩
𝝈∈Σ Obj𝑝,𝑂𝑝

Ω,knw (𝝈[𝑝 ↦→ 𝜎𝑝]),
we call 𝜎𝑝 an O-indistinguishable strategy (O-IS) of 𝑝 (for
𝑂 𝑝 and knw).

Intuitively, when a player takes an O-IS as her strategy, an
adversary cannot narrow down the set of candidates of 𝑝’s
objective from O by the following reason. By definition, any

objective𝑂 belonging toO also belongs to Obj𝑝,𝑂𝑝

Ω,knw (𝝈[𝑝 ↦→
𝜎𝑝]) for the combination of 𝜎𝑝 and any strategies of the
players other than 𝑝. This means that such an objective 𝑂
is possible as the objective of 𝑝 from the viewpoint of the
adversary who can use a type of information specified by
knw. If an O-IS 𝜎𝑝 ∈ Σ𝑝 is a winning strategy of 𝑝, then
we call 𝜎𝑝 a winning O-IS of 𝑝.

Example 3.2: Figure 4 shows a 1-player game arena
G = ({1}, 𝑉, (𝑉), 𝑣0, 𝐸) where 𝑉 = {𝑣0, 𝑣1, 𝑣2} and 𝐸 =
{(𝑣0, 𝑣0), (𝑣0, 𝑣1), (𝑣1, 𝑣0), (𝑣1, 𝑣2), (𝑣2, 𝑣0)}. We use the
same notation of Büchi objectives as Example 3.1, and in
this example the objective of player 1 is ⟨𝑣0⟩ ⊆ Play. We
assume that an adversary knows that the objective of player 1
is a Büchi objective. In this example, we focus on knw = pw.
We examine the following three strategies of player 1, all of
which result in player 1’s winning.

• Let𝜎1 ∈ Σ1 be a strategy of player 1 such that out(𝜎1) =
𝑣0𝑣0𝑣0 · · · . Since player 1 wins, an adversary can de-
duce that 𝑣0 must be an accepting state. Therefore,
Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎1) = {⟨𝑣0⟩, ⟨𝑣0, 𝑣1⟩, ⟨𝑣0, 𝑣2⟩, ⟨𝑣0, 𝑣1, 𝑣2⟩}.
For all O ⊆ Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎1), 𝜎1 is an O-IS (for ⟨𝑣0⟩
and knw = pw).

• Let𝜎2 ∈ Σ1 be a strategy of player 1 such that out(𝜎1) =
𝑣0𝑣1𝑣0𝑣1 · · · . In a similar way to the above case, an
adversary can deduce that 𝑣0 or 𝑣1 (or both) must be
an accepting state. Therefore, Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎2) = {⟨𝑣0⟩,
⟨𝑣1⟩, ⟨𝑣0, 𝑣1⟩, ⟨𝑣1, 𝑣2⟩, ⟨𝑣2, 𝑣0⟩, ⟨𝑣0, 𝑣1, 𝑣2⟩}. For all O ⊆
Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎2), 𝜎2 is an O-IS.
• Let 𝜎3 ∈ Σ1 be a strategy of player 1 such that

out(𝜎3) = 𝑣0𝑣1𝑣2𝑣0𝑣1𝑣2 · · · . In a similar way to the
above cases, an adversary can deduce that at least one
of 𝑣0, 𝑣1, and 𝑣2 must be an accepting state. Therefore,
Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎3) = {⟨𝑣0⟩, ⟨𝑣1⟩, ⟨𝑣2⟩, ⟨𝑣0, 𝑣1⟩, ⟨𝑣1, 𝑣2⟩,
⟨𝑣2, 𝑣0⟩, ⟨𝑣0, 𝑣1, 𝑣2⟩}. For all O ⊆ Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎3), 𝜎3
is an O-IS.

In the above example, Obj1, ⟨𝑣0 ⟩
Büchi,pw (𝜎1) ⊂ Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎2) ⊂
Obj1, ⟨𝑣0 ⟩

Büchi,pw (𝜎3). Hence, the strategy 𝜎3 is the most favor-
able one for player 1 with regard to her privacy protection.
This observation motivates us to introduce a new concept of
equilibrium defined below.

Objective-indistinguishability equilibrium

Definition 3.2: Let (𝑂 𝑝)𝑝∈𝑃 be an objective profile and
knw ∈ {pw, gw, pg, pgw} be a type of information that an
adversary can use. We call a strategy profile 𝝈 ∈ Σ such that

∀𝑝 ∈ 𝑃. ∀𝜎𝑝 ∈ Σ𝑝 . Obj𝑝,𝑂𝑝

knw (𝝈[𝑝 ↦→ 𝜎𝑝]) ⊆ Obj𝑝,𝑂𝑝

knw (𝝈)
(1)

an objective-indistinguishability equilibrium (OIE) for knw.

If a strategy profile 𝝈 is an OIE for knw, no player can ex-
pand her Obj𝑝,𝑂𝑝

knw (𝝈) by changing her strategy alone. For
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𝑣0

𝑣1 𝑣2

Fig. 5 3-player game arena with Büchi objectives

a strategy profile 𝝈 ∈ Σ, we call a strategy 𝜎𝑝 ∈ Σ𝑝 such
that Obj𝑝,𝑂𝑝

Ω,knw (𝝈[𝑝 ↦→ 𝜎𝑝]) ⊈ Obj𝑝,𝑂𝑝

Ω,knw (𝝈) a profitable de-
viation for OIE. In this paper, we think that a set O1 ⊆ 2Play

of objectives is less indistinguishable than a set O2 ⊆ 2Play

of objectives when O1 ⊂ O2, not when |O1 | < |O2 | because
the latter does not always imply that O1 is more informa-
tive than O2. If an OIE 𝝈 is an NE as well, we call 𝝈
an objective-indistinguishability Nash equilibrium (OINE).
While an OIE is locally optimal with respect only to indis-
tinguishability, an OINE is locally optimal with respect to
both indistinguishability and the result (winning or losing)
of the game.

Example 3.3: Figure 5 shows a 3-player game arena G =
(𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) where 𝑃 = {0, 1, 2}, 𝑉 = {𝑣0, 𝑣1, 𝑣2},
𝑉𝑝 = {𝑣𝑝} (𝑝 ∈ 𝑃) and 𝐸 = { (𝑣0, 𝑣1), (𝑣1, 𝑣0), (𝑣1, 𝑣2),
(𝑣2, 𝑣0) }. The objective of player 𝑝 ∈ 𝑃 is ⟨𝑣𝑝⟩, and hence
the objective profile is 𝜶 = (⟨𝑣0⟩, ⟨𝑣1⟩, ⟨𝑣2⟩). Players 0
and 2 have only one strategy 𝜎0 ∈ Σ0 and 𝜎2 ∈ Σ2, re-
spectively, where 𝜎0 (ℎ0) = 𝑣1 and 𝜎2 (ℎ2) = 𝑣0 for every
ℎ0 ∈ Hist0 ∪ {𝜀} and ℎ2 ∈ Hist2 ∪ {𝜀}. Let 𝜎1, 𝜎

′
1 ∈ Σ1

be the strategies of player 1 defined as 𝜎1 (ℎ1) = 𝑣0 and
𝜎′

1 (ℎ1) = 𝑣2 for every ℎ1 ∈ Hist1∪{𝜀}. Let𝝈 = (𝜎0, 𝜎1, 𝜎2)
and 𝝈′ = (𝜎0, 𝜎

′
1, 𝜎2). It holds that out(𝝈) = 𝑣0𝑣1𝑣0𝑣1 · · · ,

Win(𝝈,𝜶) = {0, 1}, out(𝝈′) = 𝑣0𝑣1𝑣2𝑣0𝑣1𝑣2 · · · and
Win(𝝈′,𝜶) = {0, 1, 2}. We have

Obj1, ⟨𝑣1 ⟩
Büchi,knw (𝝈) =

{
Ω \ {∅, ⟨𝑣2⟩} knw = pw, gw and pgw,
Ω \ {⟨𝑣2⟩} knw = pg,

Obj1, ⟨𝑣1 ⟩
Büchi,knw (𝝈

′) =
{
Ω \ {∅} knw = pw, gw and pgw, and
Ω knw = pg.

For knw = pw, gw, pg and pgw, 𝝈 is not an OIE because
there exists a profitable deviation 𝜎′

1 ∈ Σ1 for OIE. For
knw = pw, gw, pg and pgw, 𝝈′ is an OIE by the following
reason: Players 0 and 2 have no profitable deviation for OIE
because |Σ0 | = |Σ2 | = 1, i.e., each of them has only one
strategy. Player 1 also has no profitable deviation for OIE
because there is no strategy improving Obj1, ⟨𝑣1 ⟩

Büchi,knw (𝝈
′) for

each of knw = pw, gw, pg and pgw.

4. Decidability and complexity results on the existence
of O-IS

Problem 4.1: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena, 𝑝 ∈ 𝑃 be a player, 𝑂 𝑝 be an objective of 𝑝 and

O ⊆ 2Play be a subset of objectives. Decide whether there
exists an O-IS of 𝑝 for 𝑂 𝑝 .

To solve Problem 4.1, we give a necessary and sufficient
condition of O-IS for each knowledge of an adversary.

Lemma 4.1: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena, 𝑝 ∈ 𝑃 be a player, 𝑂 𝑝 be an objective of 𝑝 and
O be a set of objectives. A strategy 𝜎𝑝 ∈ Σ𝑝 is an O-IS of 𝑝
for 𝑂 𝑝 , i.e., O ⊆ ∩

𝝈∈Σ Obj𝑝,𝑂𝑝

knw (𝝈[𝑝 ↦→ 𝜎𝑝]), if and only
if

out𝑝 (𝜎𝑝) ⊆
∩
𝑂∈O

(
(𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)

)
(2)

when knw = pw,

out𝑝 (𝜎𝑝) ⊆
∩

𝑂∈O∩Winnable𝑝
(𝑂 𝑝 ∩𝑂) ∩

∩
𝑂∈O∩{∅}

𝑂 𝑝

(3)
when knw = gw,

out𝑝 (𝜎𝑝) ⊆
∩

𝑂∈O∩Winnable𝑝
𝑂 (4)

when knw = pg,

out𝑝 (𝜎𝑝) ⊆
∩
𝑂∈O

(
(𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)

)
∩∩

𝑂∈O∩Winnable𝑝
(𝑂 ∩𝑂 𝑝) (5)

when knw = pgw.

Proof. Let knw = pgw. Assume that O ⊆∩
𝝈∈Σ Obj𝑝,𝑂𝑝

pgw (𝝈[𝑝 ↦→ 𝜎𝑝]). Then, every 𝑂 ∈ O should
belong to Obj𝑝,𝑂𝑝

pgw (𝝈[𝑝 ↦→ 𝜎𝑝]) for every 𝝈 ∈ Σ. Then by
the definition of Obj𝑝,𝑂𝑝

pgw , every 𝑂 ∈ O and every 𝝈 ∈ Σ

should satisfy out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ (𝑂∩𝑂 𝑝)∪ (𝑂∩𝑂 𝑝) and
whenever 𝑂 ∈ Winnable𝑝 , out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ 𝑂 ∩𝑂 𝑝 and
out𝑝 (𝜎𝑝) ⊆ 𝑂. Because out𝑝 (𝜎𝑝) = {out(𝝈[𝑝 ↦→ 𝜎𝑝]) |
𝝈 ∈ Σ}, we have the containment in the above (5). The other
containments can be proved in a similar way. □

We first show some lower bounds of complexities for
solving Problem 4.1. Although the class of Muller objectives
is the largest one considered in this paper, the complexity of
Problem 4.1 for Muller objectives is not the hardest. The
reason is described in the footnote of Section 2.

Theorem 4.1: Problem 4.1 is

(a1) P-hard when 𝑂 𝑝 and O are over Büchi, co-Büchi or
Muller objectives,

(a2) coNP-hard when 𝑂 𝑝 and O are over Streett objectives,
and

(a3) PSPACE-hard when 𝑂 𝑝 and O are over Rabin objec-
tives.

Proof. We can reduce Problem 2.1 for Büchi (resp.
co-Büchi, Streett and Muller) objectives to Problem 4.1
for Büchi (resp. co-Büchi, Streett and Muller) objectives
as follows: Let (G, 𝑝, 𝑂 𝑝) be an instance of Problem 2.1
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𝑢0

𝑣0

𝑢1

G

Fig. 6 The game arena G′ made from a game arena G

where 𝑂 𝑝 is a Büchi, co-Büchi, Streett or Muller objec-
tive. When knw = pw, gw or pgw, let (G ′, 𝑝′, 𝑂 ′

𝑝′ ,O
′)

be an instance of Problem 4.1 where G ′ = G, 𝑝′ = 𝑝,
𝑂 ′

𝑝′ = 𝑂 𝑝 and O′ = {Play}. When knw = pw, the right-
hand side of the containment (2) of Lemma 4.1 becomes
(Play ∩ 𝑂 ′

𝑝′) ∪ (Play ∩ 𝑂 ′
𝑝′) = 𝑂 ′

𝑝′ = 𝑂 𝑝 . This prop-
erty also holds when knw = gw or pgw as follows. When
knw = gw, the right-hand side of the containment (3) of
Lemma 4.1 becomes (𝑂 ′

𝑝′ ∩ Play) ∩ Play = 𝑂 ′
𝑝′ = 𝑂 𝑝 .

Note that Play is always in Winnable𝑝 and the second
term in the right-hand side of the containment (3) is Play
if O′ ∩ {∅} is empty, and 𝑂 𝑝 otherwise. Since we let
O′ = {Play}, the second term in the right-hand side of
the containment (3) equals Play. When knw = pgw, the
right-hand side of the containment (5) of Lemma 4.1 be-
comes ((Play ∩ 𝑂 ′

𝑝′) ∪ (Play ∩ 𝑂 ′
𝑝′)) ∩ (Play ∩ 𝑂 ′

𝑝′) =

(𝑂 ′
𝑝′ ∪ (∅ ∩ 𝑂 ′

𝑝′)) ∩ 𝑂 ′
𝑝′ = 𝑂 ′

𝑝′ = 𝑂 𝑝 . By Lemma 4.1,
a strategy 𝜎′

𝑝′ ∈ Σ𝑝′

G′ is an O′-IS of 𝑝′ for 𝑂 ′
𝑝′ if and only

if out𝑝′ (𝜎′
𝑝′) ⊆ 𝑂 𝑝 , i.e., 𝜎′

𝑝′ is a winning strategy of 𝑝 for
𝑂 𝑝 in G. Therefore, Problem 2.1 for Büchi (resp. co-Büchi,
Streett and Muller) objectives is reduced to Problem 4.1 for
Büchi (resp. co-Büchi, Streett and Muller) objectives. We
conclude (a1) (resp. (a2)) of the lemma when knw = pw, gw
or pgw by Theorem 2.2 (1) (resp. (3)).

When knw = pg, letG ′ = (𝑃,𝑉 ′, (𝑉 ′
𝑖 )𝑖∈𝑃 , 𝑢0, 𝐸

′) where
𝑉 ′ = 𝑉 ∪ {𝑢0, 𝑢1},𝑉 ′

𝑝 = 𝑉𝑝 ∪ {𝑢0, 𝑢1},𝑉 ′
𝑖 = 𝑉𝑖 (𝑖 ∈ 𝑃 \ {𝑝})

and 𝐸 ′ = 𝐸 ∪ {(𝑢0, 𝑣0), (𝑢0, 𝑢1), (𝑢1, 𝑢1)}. Figure 6 shows
G ′. Let 𝑝′ = 𝑝. In this paragraph, we use regular expressions
to represent objectives. For example, 𝑢0𝑂 𝑝 means the set
{𝑢0𝜌 | 𝜌 ∈ 𝑂 𝑝}. Let 𝑂 ′

𝑝′ = 𝑢0𝑂 𝑝 and O′ = {𝑂1, 𝑂2}
where 𝑂1 = 𝑢0Play and 𝑂2 = 𝑢0 (𝑂 𝑝 ∪ 𝑢𝜔

1 ). Note that
Play in the definition of 𝑂1 means the set of all plays in G.
Moreover, 𝑢𝜔

1 in the definition of𝑂2 is the regular expression
that represents the singleton set consisting of the infinite
sequence of 𝑢1. Note that 𝑂1, 𝑂2 ∈ Winnable𝑝

′

G′ because any
strategy of 𝑝′ moving to 𝑣0 from 𝑢0 is a winning strategy for
𝑂1 and any strategy of 𝑝′ moving to 𝑢1 from 𝑢0 is a winning
strategy for 𝑂2. Hence, we have∩

𝑂∈O′∩Winnable𝑝
′

G′

𝑂 = 𝑂1 ∩𝑂2 = 𝑢0𝑂 𝑝 .

By Lemma 4.1, this means that if an O′-IS 𝜎𝑝′ exists, then

out𝑝 (𝜎𝑝′) ⊆ 𝑢0𝑂 𝑝 , and thus we have a winning strategy of
𝑝 for 𝑂 𝑝 in G by removing the initial transition from 𝑢0 to 𝑣0
in 𝜎𝑝′ . Conversely, if we have a winning strategy 𝜎𝑝 of 𝑝 for
𝑂 𝑝 in G, then we also have an O′-IS of 𝑝′ for 𝑂 ′

𝑝′ in G ′ by
adding the initial transition from 𝑢0 to 𝑣0 in 𝜎𝑝 . Therefore,
when knw = pg, Problem 2.1 is reduced to Problem 4.1
and we conclude (a1) and (a2) by Theorem 2.2 (1) and (3),
respectively.

We can reduce Problem 2.1 for an intersection of Rabin
objectives to Problem 4.1 for Rabin objectives as follows: Let
(G, 𝑝, 𝑂 𝑝) be an instance of Problem 2.1 where 𝑂 𝑝 = 𝑂1 ∩
· · · ∩ 𝑂𝑘 is an intersection of Rabin objectives 𝑂1, . . . , 𝑂𝑘 .
Then, let (G ′, 𝑝′, 𝑂 ′

𝑝′ ,O
′) be an instance of Problem 4.1

where G ′ = G, 𝑝′ = 𝑝, 𝑂 ′
𝑝′ = Play and O′ = {𝑂1, . . . , 𝑂𝑘 }.

When knw = pw, it is easy to see that the right-hand side
of the containment (2) of Lemma 4.1 becomes 𝑂 𝑝 = 𝑂1 ∩
· · · ∩ 𝑂𝑘 . Assume knw = gw. If 𝑂𝑖 ∉ Winnable𝑝 for some
1 ≤ 𝑖 ≤ 𝑘 , then there is no winning strategy of 𝑝 for 𝑂 𝑝 in
G. Hence, we consider only the case where 𝑂𝑖 ∈ Winnable𝑝
for all 1 ≤ 𝑖 ≤ 𝑘 . Because the empty objective ∅ ⊆ Play is
never in Winnable𝑝 , we have∩
𝑂∈O′∩Winnable𝑝′

(𝑂 ′
𝑝′∩𝑂)∩

∩
𝑂∈O′∩{∅}

𝑂 ′
𝑝′ = 𝑂 𝑝∩Play = 𝑂 𝑝 .

Also when knw = pg or pgw, we can show that the right-hand
sides of the containments (4) and (5) of Lemma 4.1 become
𝑂 𝑝 . Hence, for every knw ∈ {pw, gw, pg, pgw}, there exists
a winning strategy of 𝑝 for 𝑂 𝑝 in G if and only if there exists
an O′-IS of 𝑝′ for 𝑂 ′

𝑝′ in G ′. Therefore, Problem 2.1 for an
intersection of Rabin objectives is reduced to Problem 4.1 for
Rabin objectives. We conclude (a3) by Theorem 2.2 (4). □

Next, we provide upper bounds for solving Prob-
lem 4.1.

Theorem 4.2: Problem 4.1 is in

(b1) P when knw = pg and O is over Büchi, co-Büchi or
Muller objectives,

(b2) coNP when knw = pw, gw or pgw and 𝑂 𝑝 and O are
over Büchi objectives or over co-Büchi objectives and
when knw = pg and O is over Streett objectives,

(b3) PSPACE when 𝑂 𝑝 and O are over Rabin or Streett
objectives,

(b4) EXPTIME when knw = pw, gw or pgw and 𝑂 𝑝 and O
are over Muller objectives.

Proof. (b1): Assume knw = pg. When O is over Büchi
(resp. co-Büchi and Muller) objectives, the right-hand side
of the containment (4) of Lemma 4.1 is an intersection of
Büchi objectives (resp. a co-Büchi objective and a Muller
objective). This means that there is anO-IS forO over Büchi
(resp. co-Büchi and Muller) objectives if and only if there
is a winning strategy for an intersection of Büchi objectives
(resp. a co-Büchi objective and a Muller objective). Hence,
(b1) holds by Theorem 2.2 (1). Note that O ∩ Winnable𝑝
can be computed in polynomial time because each member
of O is a Büchi, co-Büchi or Muller objective.

(b2): The right-hand side of the containment (2) of
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Lemma 4.1 can be considered a Streett objective as follows:
Assume knw = pw and 𝑂 𝑝 and O are over Büchi objectives.
Let𝑂 be an arbitrary member of O. Because both𝑂 and𝑂 𝑝

are Büchi objectives, both𝑂 and𝑂 𝑝 are co-Büchi objectives.
An intersection of co-Büchi objectives is also a co-Büchi
objective. Hence, 𝑂 ∩𝑂 𝑝 is a co-Büchi objective. It is easy
to see that (𝑂∩𝑂 𝑝)∪(𝑂∩𝑂 𝑝) = (𝑂∪(𝑂∩𝑂 𝑝))∩(𝑂 𝑝∪(𝑂∩
𝑂 𝑝)). Both 𝑂∪ (𝑂∩𝑂 𝑝) and 𝑂 𝑝 ∪ (𝑂∩𝑂 𝑝) have forms of
(𝐹𝑘 , 𝐺𝑘 ) of a Streett objective in Definition 2.2. Therefore,
the right-hand side of the containment (2) of Lemma 4.1 is a
Streett objective. We can also verify that the same property
holds when any combination of knw = pw, gw or pgw and
𝑂 𝑝 andO over Büchi objectives or over co-Büchi objectives.
Assume knw = pg and O is over Streett objectives. Because
an intersection of Streett objectives is also a Streett objective,
the right-hand side of the containment (4) of Lemma 4.1 is
a Streett objective. By Theorem 2.2 (3), (b2) holds.

(b3): It is easy to see that both a Rabin objective and a
Streett objective are Boolean combinations of Büchi objec-
tives. A Boolean combination of Rabin or Streett objectives
is also a Boolean combination of Büchi objectives. Hence,
the right-hand sides of the containments (2), (3), (4) and (5)
of Lemma 4.1 are Boolean combinations of Büchi objectives
because any 𝑂 ∈ O and 𝑂 𝑝 are Rabin or Streett objectives.
Therefore, (b3) holds by Theorem 2.2 (4).

(b4): Assume knw = pw, gw or pgw and 𝑂 𝑝 and O
are over Muller objectives. Then the right-hand sides of the
containments (2), (3) and (5) of Lemma 4.1 are also Muller
objectives. Recall that we represent a Muller objective by
a set of bit vectors of length |𝑉 | where each bit represents
whether the corresponding vertex should be visited infinitely
often. For a given specification F of a Muller objective, the
description length of the specification F ′ of the complement
objective of Muller(F), i.e., Muller(F ′) = Muller(F), may
become an exponential order of that of |𝑉 | even if that of F
is a polynomial of |𝑉 |. Therefore, (b4) holds by Theorem 2.2
(1). □
Table 1 in Section 1 summarizes Theorems 4.1 and 4.2.

Next, we consider the same problem as Problem 4.1 for
a winning O-IS.

Problem 4.2: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena, 𝑝 ∈ 𝑃 be a player, 𝑂 𝑝 be an objective of 𝑝 and
O ⊆ 2Play be a subset of objectives. Decide whether there
exists a winning O-IS of 𝑝 for 𝑂 𝑝 .

Recall that a winningO-IS is a strategy that is a winning strat-
egy and an O-IS. Hence, for a 𝑝’s objective 𝑂 𝑝 , a winning
O-IS 𝜎𝑝 of 𝑝 should satisfy the condition out𝑝 (𝜎𝑝) ⊆ 𝑂 𝑝

of a winning strategy and the condition of an O-IS stated in
Lemma 4.1: 𝜎𝑝 is a winning O-IS if and only if

out𝑝 (𝜎𝑝) ⊆ 𝑂 𝑝 ∩
∩
𝑂∈O

𝑂 when knw = pw or pgw,

out𝑝 (𝜎𝑝) ⊆ 𝑂 𝑝 ∩
∩

𝑂∈O∩Winnable𝑝
(𝑂 𝑝 ∩𝑂) ∩

∩
𝑂∈O∩{∅}

𝑂 𝑝

when knw = gw,

Table 2 The complexities of Problem 4.2
gw pw, pg or pgw

Büchi or coNP P-completeco-Büchi P-hard

Streett PSPACE coNP-completecoNP-hard
Rabin PSPACE-complete PSPACE-complete

Muller EXPTIME P-completeP-hard

out𝑝 (𝜎𝑝) ⊆ 𝑂 𝑝 ∩
∩

𝑂∈O∩Winnable𝑝
𝑂 when knw = pg.

The complexities of Problem 4.2 is as shown in Table 2.
We can prove these complexities in the same way as the
proofs of Theorems 4.1 and 4.2. Note that the upper bounds
of the complexities of Problem 4.2 when knw = pw and
knw = pgw (except for Rabin objectives) are lower than
those of Problem 4.1, because the above conditions when
knw = pw and knw = pgw are simpler than (2) and (5) in
Lemma 4.1.

5. Decidability result of the existence of OIE

In this section, we prove that the existence of an OIE when
we assume the rationality of a player only when she is a
loser, i.e., we remove the conditions underlined with solid
lines from the definitions of Obj𝑝,𝑂𝑝

Ω,knw. The definitions of
Obj𝑝,𝑂𝑝

Ω,knw become as follows:

Obj𝑝,𝑂𝑝

Ω,pw (𝝈) = {𝑂 ⊆ 𝑉𝜔 |

out(𝝈) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)},

Obj𝑝,𝑂𝑝

Ω,gw (𝝈) = {𝑂 ∈ Ω |
(𝑂 ∈ Winnable𝑝 ⇒ out(𝝈) ∈ 𝑂 𝑝) ∧
(𝑂 = ∅ ⇒ out(𝝈) ∉ 𝑂 𝑝)},

Obj𝑝,𝑂𝑝

Ω,pg (𝝈) = {𝑂 ∈ Ω |
𝑂 ∈ Winnable𝑝 ⇒ out(𝝈) ∈ 𝑂},

Obj𝑝,𝑂𝑝

Ω,pgw (𝝈) = {𝑂 ∈ Ω |

out(𝝈) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝) ∧
(𝑂 ∈ Winnable𝑝 ⇒ out(𝝈) ∈ 𝑂 ∩𝑂 𝑝)}.

This simplification causes Obj𝑝,𝑂𝑝

Ω,𝑘𝑛𝑤 (𝝈) to depend only on
the outcome of 𝝈, not on 𝝈 itself. Whether the problem is
decidable or not is open in the general case.

Theorem 5.1: For a game arena G and an objective profile
𝜶 = (𝑂 𝑝)𝑝∈𝑃 over Muller objectives, whether there exists
an OIE for G and 𝜶 is decidable.

Proof. Condition (1) in Definition 3.2 is equivalent to the
following condition:

∀𝑝 ∈ 𝑃. ∀𝜎𝑝 ∈ Σ𝑝 . ∀𝑂 ∈ Ω.

𝑂 ∈ Obj𝑝,𝑂𝑝

Ω,knw (𝝈[𝑝 ↦→ 𝜎𝑝]) ⇒ 𝑂 ∈ Obj𝑝,𝑂𝑝

Ω,knw (𝝈).
(6)
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First we consider the case where knw = pgw. By the defini-
tion of Obj𝑝,𝑂𝑝

Ω,pgw, Condition (6) for knw = pgw is equivalent
to the following condition:

∀𝑝 ∈ 𝑃. ∀𝜎𝑝 ∈ Σ𝑝 . ∀𝑂 ∈ Ω.

if 𝑂 ∈ Winnable𝑝 , then
(out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ 𝑂 ∩𝑂 𝑝 ⇒ out(𝝈) ∈ 𝑂 ∩𝑂 𝑝);
otherwise,

(out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)
=⇒ out(𝝈) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)).

(7)

For 𝑂 ∈ O and 𝑝 ∈ 𝑃, let 𝑅𝑂
𝑝 be the objective defined as

follows: If𝑂 ∈ Winnable𝑝 , 𝑅𝑂
𝑝 = 𝑂∩𝑂 𝑝 . Otherwise, 𝑅𝑂

𝑝 =

(𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝). Let 𝜶𝑂 = (𝑅𝑂
𝑝 )𝑝∈𝑃 be the objective

profile consisting of these objectives. Then, Condition (7)
can be written as ∀𝑂 ∈ O. Nash(𝝈,𝜶𝑂). Therefore, this
theorem holds for knw = pgw by Theorem 2.3.

For the other cases, the implication inside the scope of
the three universal quantifiers in Condition (6) is equivalent
to the following implications:

When knw = pw,

out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝)
=⇒ out(𝝈) ∈ (𝑂 ∩𝑂 𝑝) ∪ (𝑂 ∩𝑂 𝑝).

When knw = gw,
if 𝑂 ∈ Winnable𝑝 , then
out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ 𝑂 𝑝 =⇒ out(𝝈) ∈ 𝑂 𝑝;
if 𝑂 = ∅, then

out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ 𝑂 𝑝 ⇒ out(𝝈) ∈ 𝑂 𝑝 .

When knw = pg,
if 𝑂 ∈ Winnable𝑝 , then
out(𝝈[𝑝 ↦→ 𝜎𝑝]) ∈ 𝑂 ⇒ out(𝝈) ∈ 𝑂.

These conditions can be written as the combination of NE in
the same way as the case where knw = pgw. Therefore, this
theorem also holds for knw ∈ {pw, gw, pg} by Theorem 2.3.

□

Corollary 5.1: For a game arena G and an objective profile
𝜶 = (𝑂 𝑝)𝑝∈𝑃 over Muller objectives, whether there exists
an OINE for G and 𝜶 is decidable.

Proof. As shown in the proof of Theorem 5.1, 𝝈 ∈ Σ is
an OIE if and only if it is an ((𝜶𝑂)𝑂∈O)-NE. By definition,
𝝈 is an OINE if and only if it is an OIE and also satisfies
Nash(𝝈,𝜶). Therefore, 𝝈 is an OINE if and only if it is an
((𝜶𝑂)𝑂∈O,𝜶)-NE, and the theorem holds by Theorem 2.3.

□

6. Conclusion

We proposed two new notions O-indistinguishable strategy

(O-IS) and objective-indistinguishability equilibrium (OIE).
Then, we analyzed the complexities of deciding whether
there exists an O-IS for some classes of objectives. In addi-
tion, we proved that whether there exists an OIE over Muller
objectives is decidable under a weaker assumption on ra-
tionality. To prove this, we defined an (𝜶1, . . . ,𝜶𝑛)-Nash
equilibrium as a strategy profile which is simultaneously a
Nash equilibrium for all objective profiles𝜶1, . . . ,𝜶𝑛. In Ap-
pendix, we proved that whether there exists an (𝜶1, . . . ,𝜶𝑛)-
Nash equilibrium is decidable.

In this paper, we assume that an adversary is not a
player but an individual who observes partial information
on the game. He cannot directly affect the outcome of the
game by choosing next vertices. We can consider another
setting where an adversary is also a player. His objective is
minimizing the set Obj𝑝,𝑂𝑝

Ω,knw of candidate objectives of other
players and he takes a strategy for achieving the objective.
Extending the results shown in this paper to the above setting
is future work.

References

[1] O. Goldreich, Foundations of Cryptography, Cambridge University
Press, 2001.

[2] L. Sweeney, “𝑘-anonymity: A model for protecting privacy,” Int’l
Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
vol.10, no.5, pp.557–570, 2002.

[3] V. Bruére, “Computer aided synthesis: a game-theoretic approach,”
DLT, pp.3–35, 2017.

[4] R. Bloem, K. Chatterjee, and B. Jobstmann, “Graph games and
reactive synthesis,” in Handbook of Model Checking, ed. E.M.C.
et al., ch. 27, pp.921–962, Springer, 2018.

[5] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
ACM POPL, pp.179–190, 1989.

[6] D. Fisman, O. Kupferman, and Y. Lustig, “Rational synthesis,”
TACAS, pp.190–204, 2010.

[7] S. Almagor and S. Guendelman, “Concurrent games with multiple
topologies,” arXiv: 2207.02596.

[8] R. Berthon, B. Maubert, A. Murano, S. Rubin, and M.Y. Vardi,
“Strategy logic with imperfect information,” ACM Trans. Computa-
tional Logic, vol.22, no.1, pp.1–51, 2021.

[9] P. Bouyer, N. Markey, and S. Vester, “Nash equilibria in symmetric
graph games with partial observation,” Information and Computa-
tion, vol.254, pp.238–258, 2017.

[10] K. Chatterjee and L. Doyen, “The complexity of partial-observation
parity games,” LPAR, pp.1–14, 2010.

[11] K. Chatterjee and L. Doyen, “Games with a weak adversary,” ICALP,
pp.110–121, 2014.

[12] P. Samarati, “Protecting respondents’ identities in microdata re-
lease,” IEEE Trans. Knowledge and Data Engineering, vol.13, no.6,
pp.1010–1027, 2001.

[13] J.W. Byun, A. Kamra, E. Bertino, and N. Li, “Efficient 𝑘-
anonymization using clustering techniques,” DASFAA, pp.188–200,
2007.

[14] R.J. Bayardo and R. Agrawal, “Data privacy through optimal 𝑘-
anonymization,” ICDE, pp.217–228, 2005.

[15] A. Machanavajjhala, J. Gehrke, and D. Kifer, “ℓ-diversity: Privacy
beyond 𝑘-anonymity,” ICDE, vol.24, 2006. also in TKDD, 1(1), Mar
2007.

[16] N. Li, T. Li, and S. Venkatasubramanian, “𝑡-closeness: Privacy
beyond 𝑘-anonymity and ℓ-diversity,” ICDE, pp.106–115, 2007.

[17] C. Dwork, F.D. McSherry, K. Nissim, and A. Smith, “Calibrating
noise to sensitivity in private data analysis,” TCC, pp.265–284, 2006.



12
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

[18] C. Dwork, “Differential privacy,” ICALP, pp.1–12, 2006.
[19] C. Dwork, “Differential privacy: A survey of results,” TAMC, pp.1–

19, 2008.
[20] C. Dwork and A. Roth, “The algorithmic foundations of differential

privacy,” Foundations and Trends in Theoretical Computer Science,
vol.9, pp.3–4, 2013. now Publishers.

[21] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” IEEE Symp.
Security and Privacy, 2017.

[22] B.C.M. Fung, K. Wang, R. Chen, and P.S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Computing
Surveys, vol.42, no.4, pp.14:1–14:53, June 2010.

[23] M.E. Andrés, N.E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi, “Geo-indistinguishability: Differential privacy for
location based systems,” ACM CCS, 2013.

[24] M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Moronov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
ACM CCS, 2016.

[25] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
ACM CCS, 2015.

[26] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden, “Anonymity
protocols as noisy channels,” Information and Computation, vol.206,
no.2-4, pp.378–401, 2008.

[27] G. Smith, “On the foundations of quantitative information flow,”
FoSSaCS, pp.288–302, 2009.

[28] D. Clark, S. Hunt, and P. Malacaria, “A static analysis for quantify-
ing information flow in a simple imperative language,” J. Computer
Security, vol.15, pp.321–371, 2007.

[29] O. Kupferman and O. Leshkowitz, “Synthesis of privacy-preserving
systems,” FSTCS, vol.42, pp.1–21, 2022.

[30] R. Nakanishi, Y. Takata, and H. Seki, “A game theoretic approach to
indistinguishability of winning objectives as user privacy,” Interna-
tional Colloquium on Theoretical Aspects of Computing, pp.36–54,
2023.

[31] M. Ummels, “The complexity of nash equilibria in infinite multi-
player games,” FOSSACS, pp.20–34, 2008.

[32] M. Ummels and D. Wojtczak, “The complexity of nash equilibria
in stochastic multiplayer games,” Logical Methods in Computer Sci-
ence, vol.7, no.3, 2011.

[33] K. Chatterjee, L. de Alfaro, and T.A. Henzinger, “The complexity of
stochastic Rabin and Streett games,” ICALP, 2005.

Appendix A: Decidability of the existence of multiple
Nash equilibrium

In this section, we give a proof of Theorem 2.3.
For a play 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play, let 𝜌≤𝑖 = 𝑣0 · · · 𝑣𝑖

and 𝜌≥𝑖 = 𝑣𝑖𝑣𝑖+1𝑣𝑖+2 · · · . For an objective 𝑂 and a his-
tory ℎ = 𝑣0 · · · 𝑣𝑖 , we define ℎ\𝑂 as ℎ\𝑂 = {𝜌≥𝑖 | 𝜌 ∈
𝑂 ∧ 𝜌≤𝑖 = ℎ}. Note that each sequence in ℎ\𝑂 is start-
ing from 𝑣𝑖 , not 𝑣𝑖+1. For an objective 𝑂 and a ver-
tex 𝑣, we define ∗𝑣\𝑂 as ∗𝑣\𝑂 =

∪
ℎ𝑣∈Hist ℎ𝑣\𝑂. For

a game arena G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) and 𝑣 ∈ 𝑉 , let
(G, 𝑣) = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣, 𝐸) be the game arena obtained
from G by replacing the initial vertex 𝑣0 of G with 𝑣. Note
that every objective in the objective classes in this paper
is “prefix-independent”, i.e., ℎ1𝜌 ∈ 𝑂 ⇐⇒ ℎ2𝜌 ∈ 𝑂
for any objective 𝑂, histories ℎ1, ℎ2, and 𝜌 satisfying
ℎ1𝜌, ℎ2𝜌 ∈ Play, because the objective is defined only on the
set of vertices that appear in a play infinitely often. There-
fore, ℎ1𝑣\𝑂 = ℎ2𝑣\𝑂 for any histories ℎ1𝑣 and ℎ2𝑣, which
implies ℎ𝑣\𝑂 = ∗𝑣\𝑂 for any history ℎ𝑣.

For a game arena G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) and an
objective profile 𝜶 = (𝑂 𝑝)𝑝∈𝑃 , we define the game arena
G𝑝 = ({𝑝,−𝑝}, 𝑉, (𝑉𝑝 , 𝑉𝑝), 𝑣0, 𝐸) and the objective profile
(𝑂 𝑝 , 𝑂 𝑝) for each 𝑝 ∈ 𝑃. The game arena G𝑝 with the
objective profile (𝑂 𝑝 , 𝑂 𝑝) is a 2-player zero-sum game such
that vertices and edges are the same as G and the player
−𝑝 is formed by the coalition of all the players in 𝑃 \ {𝑝}.
The following proposition is a variant of [3, Proposition 28]
adjusted to the settings of this paper.

Proposition A.1: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a
game arena and 𝜶 = (𝑂 𝑝)𝑝∈𝑃 be an objective profile. Then,
a play 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play is the outcome of some NE
𝝈 ∈ ΣG for 𝜶, i.e., 𝜌 = out(𝝈), if and only if ∀𝑝 ∈ 𝑃. ((∃𝑖 ≥
0. 𝑣𝑖 ∈ 𝑉𝑝 ∧ 𝜌≤𝑖\𝑂 𝑝 ∈ Winnable𝑝(G,𝑣𝑖) ) =⇒ 𝜌 ∈ 𝑂 𝑝).

Proof. (⇒) We prove this direction by contradiction.
Assume that a play 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play is the outcome
of an NE 𝝈 = (𝜎𝑝)𝑝∈𝑃 ∈ Σ for 𝜶 and there exist 𝑝 ∈ 𝑃
and 𝑖 ≥ 0 with 𝑣𝑖 ∈ 𝑉𝑝 ∧ 𝜌≤𝑖\𝑂 𝑝 ∈ Winnable𝑝(G,𝑣𝑖) such
that 𝜌 ∉ 𝑂 𝑝 . Since 𝜌≤𝑖\𝑂 𝑝 ∈ Winnable𝑝(G,𝑣𝑖) , there exists a
winning strategy 𝜏𝑝 ∈ Σ𝑝

(G,𝑣𝑖) of 𝑝 for 𝜌≤𝑖\𝑂 𝑝 . Let 𝜎′
𝑝 ∈ Σ𝑝

G
be the strategy obtained from 𝜎𝑝 and 𝜏𝑝 as follows: Until
producing 𝑣0𝑣1 · · · 𝑣𝑖 , 𝜎′

𝑝 is the same as 𝜎𝑝 . From 𝑣𝑖 , 𝜎′
𝑝

behaves in the same way as 𝜏𝑝 . Therefore, out(𝝈[𝑝 ↦→ 𝜎′
𝑝])

equals 𝑣0𝑣1 · · · 𝑣𝑖−1𝜋 for some play 𝜋 of (G, 𝑣𝑖) and 𝜋 ∈
𝜌≤𝑖\𝑂 𝑝 because 𝜏𝑝 is a winning strategy of 𝑝 for 𝜌≤𝑖\𝑂 𝑝

in (G, 𝑣𝑖). We have out(𝝈[𝑝 ↦→ 𝜎′
𝑝]) = 𝑣0 · · · 𝑣𝑖−1𝜋 ∈ 𝑂 𝑝 .

This contradicts the assumption that 𝝈 is an NE.
(⇐) Let 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play be a play on G and

assume that 𝜌 ∈ 𝑂 𝑝 for all 𝑝 ∈ 𝑃 such that if there exists
𝑖 ≥ 0 satisfying 𝑣𝑖 ∈ 𝑉𝑝 ∧ 𝜌≤𝑖\𝑂 𝑝 ∈ Winnable𝑝(G,𝑣𝑖) then
𝜌 ∈ 𝑂 𝑝 . We define a strategy profile 𝝈 = (𝜎𝑝)𝑝∈𝑃 as
the one that satisfies the following two conditions: First,
𝝈 produces 𝜌 as its outcome, i.e., out(𝝈) = 𝜌. Second,
if some player 𝑝 deviates from 𝜌 at 𝑣 𝑗 ∈ 𝑉𝑝 ( 𝑗 ≥ 0) and
𝜌≤ 𝑗\𝑂 𝑝 ∉ Winnable𝑝(G,𝑣𝑗 ) , then all the other players (as a
coalition) play from 𝑣 𝑗 according to a winning strategy of
−𝑝 for (G𝑝 , 𝑣 𝑗 ) and 𝜌≤ 𝑗\𝑂 𝑝 . (Note that in a 2-player zero-
sum game, there is always a winning strategy for one of the
players, and thus there is a winning strategy of−𝑝 for (G𝑝 , 𝑣 𝑗 )
and 𝜌≤ 𝑗\𝑂 𝑝 when 𝜌≤ 𝑗\𝑂 𝑝 ∉ Winnable𝑝(G,𝑣𝑗 ) .) We can
show that the strategy profile 𝝈 is an NE as follows: Assume
that some player 𝑝 deviates from 𝜎𝑝 to a strategy 𝜎′

𝑝 ∈ Σ𝑝 ,
and outG (𝝈[𝑝 ↦→ 𝜎′

𝑝]) deviates from 𝜌 at 𝑣 𝑗 ∈ 𝑉𝑝 for some
𝑗 ≥ 0. If 𝜌≤ 𝑗\𝑂 𝑝 ∈ Winnable𝑝(G,𝑣𝑗 ) , then by assumption,
𝜌 ∈ 𝑂 𝑝 . Hence, 𝜎′

𝑝 is not a profitable deviation. Otherwise,
as described above, all the other players (as a coalition)
punish the player 𝑝 by taking a winning strategy of −𝑝 for
(G𝑝 , 𝑣 𝑗 ) and 𝑂 𝑝 , and hence 𝑝 ∉ Win(𝝈[𝑝 ↦→ 𝜎′

𝑝]). Thus,
𝜎′
𝑝 is not a profitable deviation also in this case. □

Corollary A.1: Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena and 𝜶 𝑗 = (𝑂 𝑗

𝑝)𝑝∈𝑃 (1 ≤ 𝑗 ≤ 𝑛) be objective profiles.
Then, a play 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play is the outcome of some
(𝜶1, . . . ,𝜶𝑛)-NE 𝝈 ∈ Σ, i.e., 𝜌 = out(𝝈), if and only if
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Algorithm 1
Input: a game arena G = (𝑃, 𝑉 , (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) and objective profiles

𝜶 𝑗 = (𝑂 𝑗
𝑝)𝑝∈𝑃 (1 ≤ 𝑗 ≤ 𝑛) .

1: for all 𝑣 ∈ 𝑉 do
2: Let 𝑝 ∈ 𝑃 be the player such that 𝑣 ∈ 𝑉𝑝 .
3: 𝑂𝑣 :=

∩
∗𝑣\𝑂 𝑗

𝑝∈Winnable𝑝(G,𝑣) ,1≤ 𝑗≤𝑛 𝑂
𝑗
𝑝 .

4: end for
5: Nondeterministically select a set of vertices 𝑉 ′ ⊆ 𝑉 and construct a

1-player subgame arena G𝑉 ′ = ( {1}, 𝑉 ′, (𝑉 ′) , 𝑣0, 𝐸
′) of G.

6: 𝑂G𝑉 ′ :=
∩

𝑣∈𝑉 ′ 𝑂𝑣 .
7: if Player 1 has a winning strategy 𝜎1 ∈ Σ1

G𝑉 ′ for G𝑉 ′ and 𝑂G𝑉 ′ then
8: return Yes with 𝜎1
9: else

10: return No
11: end if

∀𝑝 ∈ 𝑃. 1 ≤ ∀ 𝑗 ≤ 𝑛.

(∃𝑖 ≥ 0. 𝑣𝑖 ∈ 𝑉𝑝 ∧ 𝜌≤𝑖\𝑂 𝑗
𝑝 ∈ Winnable𝑝(G,𝑣𝑖) )

=⇒ 𝜌 ∈ 𝑂
𝑗
𝑝 .

(A· 1)

Corollary A.1 can be easily proved by Proposition A.1 and
Definition 2.3.

Using this corollary, we can prove Theorem 2.3 as fol-
lows.

Theorem 2.3. Let G = (𝑃,𝑉, (𝑉𝑝)𝑝∈𝑃 , 𝑣0, 𝐸) be a game
arena and 𝜶 𝑗 = (𝑂 𝑗

𝑝)𝑝∈𝑃 (1 ≤ 𝑗 ≤ 𝑛) be objective profiles
over Muller objectives. Deciding whether there exists an
(𝜶1, . . . ,𝜶𝑛)-NE is decidable.
Proof. By Corollary A.1, there exists an (𝜶1, . . . ,𝜶𝑛)-
NE if and only if there exists a play 𝜌 = 𝑣0𝑣1𝑣2 · · · ∈ Play
satisfying Condition (A· 1). Algorithm 1 decides the exis-
tence of a play satisfying Condition (A· 1). In Algorithm 1,
we call a game arena G𝑉 ′ = ({1}, 𝑉 ′, (𝑉 ′), 𝑣0, 𝐸

′) satisfy-
ing 𝑉 ′ ⊆ 𝑉, 𝑣0 ∈ 𝑉 ′ and 𝐸 ′ = {(𝑣, 𝑣′) ∈ 𝐸 | 𝑣, 𝑣′ ∈ 𝑉 ′} a
1-player subgame arena of G (induced by 𝑉 ′).

Let us show the correctness of Algorithm 1. First, we
show that when Algorithm 1 answers Yes, the outcome of the
strategy answered by Algorithm 1 satisfies Condition (A· 1).
Let 𝜌 = outG𝑉 ′ (𝜎1) = 𝑣0𝑣1𝑣2 · · · ∈ Play for the strategy
𝜎1 returned by Algorithm 1. Because 𝜌 is the outcome of
a winning strategy for 𝑂G𝑉 ′ , we have 𝜌 ∈ 𝑂G𝑉 ′ . By the
definitions of 𝑂G𝑉 ′ and 𝑂𝑣 ,

𝜌 ∈ 𝑂G𝑉 ′ ⇐⇒ ∀𝑣 ∈ 𝑉 ′. 𝜌 ∈ 𝑂𝑣

⇐⇒ ∀𝑣 ∈ 𝑉 ′. ∀𝑝 ∈ 𝑃. 1 ≤ ∀ 𝑗 ≤ 𝑛.

(𝑣∈𝑉𝑝 ∧ ∗𝑣\𝑂 𝑗
𝑝 ∈Winnable𝑝(G,𝑣) ) ⇒ 𝜌 ∈𝑂 𝑗

𝑝 .

Because 𝜌 is a play in G𝑉 ′ , we have 𝑣𝑖 ∈ 𝑉 ′ for all 𝑖 ≥ 0.
Thus,

𝜌 ∈ 𝑂G𝑉 ′ ⇒∀𝑝 ∈ 𝑃. ∀𝑖 ≥ 0. 1 ≤ ∀ 𝑗 ≤ 𝑛.

(𝑣𝑖 ∈𝑉𝑝 ∧ ∗𝑣𝑖\𝑂 𝑗
𝑝 ∈Winnable𝑝(G,𝑣𝑖) ) ⇒ 𝜌 ∈𝑂 𝑗

𝑝 .

Therefore 𝜌 satisfies Condition (A· 1). (Note that 𝜌≤𝑖\𝑂 𝑗
𝑝 =

∗𝑣𝑖\𝑂 𝑗
𝑝 holds by the prefix-independence of the objectives.)

Conversely, we show that if there exists a play 𝜌 satisfying
Condition (A· 1), then at least one nondeterministic branch
of Algorithm 1 should answer Yes with a strategy 𝜎1 such
that 𝜌 = outG𝑉 ′ (𝜎1). Assume that there exists a play 𝜌 =
𝑣0𝑣1𝑣2 · · · ∈ Play satisfying Condition (A· 1). Let 𝑉 ′ = {𝑣 ∈
𝑉 | ∃𝑖 ≥ 0. 𝑣 = 𝑣𝑖}, and then construct the 1-player subgame
arena G𝑉 ′ = ({1}, 𝑉 ′, (𝑉 ′), 𝑣0, 𝐸

′) with 𝐸 ′ = {(𝑣, 𝑣′) ∈ 𝐸 |
𝑣, 𝑣′ ∈ 𝑉 ′} and the objective 𝑂G𝑉 ′ =

∩
𝑣∈𝑉 ′ 𝑂𝑣 where for

all 𝑣 ∈ 𝑉 ′, 𝑂𝑣 =
∩

∗𝑣\𝑂 𝑗
𝑝 ∈Winnable𝑝(G,𝑣) ,1≤ 𝑗≤𝑛𝑂

𝑗
𝑝 for 𝑝 ∈ 𝑃

such that 𝑣 ∈ 𝑉𝑝 . It is easy to see that 𝜌 is a play of G𝑉 ′

and 𝜌 ∈ 𝑂G𝑉 ′ by Condition (A· 1). Therefore, any strategy
𝜎1 that produces 𝜌 is a winning strategy of the player 1 for
G𝑉 ′ and 𝑂G𝑉 ′ , and Algorithm 1 should answer Yes with a
strategy 𝜎1 such that 𝜌 = outG𝑉 ′ (𝜎1). □
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