
DOI:10.1587/transinf.2024FCP0011

Publicized:2024/08/05

This advance publication article will be replaced by
the finalized version after proofreading.



IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER
Overlapping of Lattice Unfolding for Cuboids⇤

Takumi SHIOTA† ,††a), Student Member, Tonan KAMATA†††b), Nonmember, and Ryuhei UEHARA†††c), Member

SUMMARY A polygon obtained by cutting the surface of a polyhedron
is called an unfolding. An unfolding obtained by cutting along only edges
is called an edge unfolding. An unfolding may have overlapping, which
are self-intersections on its boundary. It is a well-known open question
in computational origami whether or not every convex polyhedron has a
non-overlapping edge unfolding. On the other hand, Sharir and Schorr
showed that any convex polyhedron could unfold without overlapping when
allowed to cut its faces. Therefore, there is a gap between edge unfoldings
and general unfoldings. Bridging this gap is necessary as a foothold on this
open question of edge unfolding. Instead of cutting faces arbitrarily, there
are studies considering whether specific cutting lines on the faces can result
in unfoldings without overlaps. Lattice unfoldings of a cuboid made by unit
cubes are one such example. A lattice unfolding of a cuboid is a polygon
obtained by cutting the faces along the edges of unit squares. An unfolding
may have overlapping, even in the case of small cuboids. In particular,
Uno showed that a 1 ⇥ 1 ⇥ 3-cuboid has an overlapping lattice unfolding,
while Mitani and Uehara showed the same for three faces of a 1 ⇥ 2 ⇥ 3-
cuboid. In contrast, it is known that some cuboids have no overlapping
lattice unfolding. Hearn showed it for a 1 ⇥ 1 ⇥ 2-cuboid, and Sugihara
showed the same for a 2⇥ 2⇥ 2-cuboid. In this study, we completely clarify
the existence of overlapping lattice unfoldings, which also contains the case
where the sizes are non-integers.
key words: computational origami, polyhedron, overlapping unfolding,

cuboid, lattice unfolding

1. Introduction

To represent a polyhedron, we sometimes use a planer layout
of arranged faces according to their adjacency relations. The
origin of this method can be traced back to Albrecht Dürer’s
1525 book “Underweysung der messung mit dem zirckel
un richt scheyt” [1]. He represented several polyhedra using
flat polygons (edge unfoldings) obtained by cutting along the
edges. All edge unfoldings of convex polyhedra in this book
are drawn so that “no two faces overlap.” However, edge
unfoldings of polyhedra do not always satisfy this condition
(e.g., Namiki and Fukuda’s overlapping edge unfolding as
shown in Fig. 1). The following problem is open:

Open Problem 1 ([2], Open Problem 21.1). Does every

convex polyhedron have a non-overlapping edge unfolding?

†Kyushu Institute of Techinology
††Research Fellow of Japan Society for the Promotion of Science

†††Japan Advanced Institute of Science and Technology
⇤A preliminary version was presented at CCCG2023.

a) E-mail: shiota.takumi779@mail.kyutech.jp
b) E-mail: kamata@jaist.ac.jp
c) E-mail: uehara@jaist.ac.jp

Fig. 1: An overlapping edge unfolding of a cube with cut-off
corners [3]. Cut along thick lines to get the figure on the
right.

Fig. 2: An overlapping lattice unfolding in the 1 ⇥ 1 ⇥ 3-
cuboid

Research on the existence of unfolding with overlap for
polyhedra has been conducted under several different con-
ditions. Biedl et al. discovered concave polyhedra where
all edge unfoldings overlap in 1998, and Grünbaum found
another instance in 2003 [4], [5]. For convex regular-faced
polyhedra, which are polyhedra whose faces are all regu-
lar polygons, it has been completely determined whether
they have overlapping edge unfoldings [6]–[9]. Addition-
ally, the number of non-overlapping edge unfoldings has
been counted for the convex regular-faced polyhedra with
overlapping edge unfoldings [10].

There are also studies on general unfoldings that allow
cutting the faces of the polyhedron, not just its edges. Sharir
and Schorr showed that any convex polyhedron could unfold
without overlapping when allowed to cut its faces [11], [12].
Therefore, there is a gap between edge unfoldings and general
unfoldings. Bridging this gap is necessary as a foothold on
Open Problem 1. Instead of cutting faces arbitrarily, there are
studies considering whether specific cutting lines on the faces
can result in unfoldings without overlaps. Lattice unfoldings
of a cuboid are one such example.

In 2008, Uno showed that the 1 ⇥ 1 ⇥ 3-cuboid has an
overlapping lattice unfolding (Fig. 2) [13]. Furthermore, in
2008, Mitani and Uehara showed that the 1 ⇥ 2 ⇥ 3-cuboid
has an overlapping lattice unfolding (Fig. 3) [14].

Each of these cutting methods can be extended to the
1 ⇥ 1 ⇥ I-cuboid, where I � 3 and the 1 ⇥ ~ ⇥ I-cuboid,
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Fig. 3: An overlapping lattice unfolding in the 1 ⇥ 2 ⇥ 3-
cuboid

Fig. 4: An example of a cuboid with diagonal lattice cutting
lines. Solid lines are cutting lines, and dashed lines are non-
cutting lines. Cut along thick lines to get on the right.

where ~ � 2, I � 3, respectively. The following theorems
are obtained:

Theorem 2 ([13]). The 1 ⇥ 1 ⇥ I-cuboid, where I 2 N and

I � 3, has an overlapping lattice unfolding.

Theorem 3 ([14]). The 1 ⇥ ~ ⇥ I-cuboid, where ~, I 2 N,

~ � 2, I � 3, and ~  I, has an overlapping lattice unfolding.

On the other hand, the following results are known for
the non-existence of overlapping lattice unfolding:

Theorem 4 ([15]). The 1⇥ 1⇥ 2-cuboid has no overlapping

lattice unfolding.

Theorem 5 ([16]). The 2⇥ 2⇥ 2-cuboid has no overlapping

lattice unfolding.

Cutting lines can be taken not only parallel to the edges
of the cuboid but also diagonally (Fig. 4). Furthermore,
as shown in Fig. 5, it is known that in the edge unfoldings
of polyhedra, two edges or two vertices of faces can be in
contact [9]. In this study, we successfully clarified the sizes
at which the lattice unfoldings of all cuboid including those
with diagonal lattice cutting lines, overlap. These overlaps
include three types: faces overlapping, two edges in touch,
and two vertices in touch. This result contributes to bridging
the gap between edge unfoldings and general unfoldings.

2. Preliminaries

2.1 Definition of cuboids

Let’s consider a square lattice where each square has an area
of 1 ⇥ 1. Suppose � = (0, 0) and ⌫ = (0, 1) are a pair of
lattice points, where 0 2 N+, 1 2 N, 0 � 1 (Fig. 6). Consider
a square with a side �⌫, whose length is ! =

p
02 + 12. A

cube with length ! on a side is constructed by assembling
the squares as its faces (Fig. 7(a)).

(a): The edge unfoldings of two edges of faces in touch

(b): The edge unfoldings of two edges of vertices in touch

Fig. 5: Examples of overlapping edge unfoldings [9]. Cut
along thick lines to get on the right.

Fig. 6: Definition of the length ! of one edge of a cube

(a): The cube with
length

p
10 on a side

(b): A (3
p

10, 2
p

10, 1
p

10)-cuboid ob-
tained by connecting six units of (a)

(c): An example of the lattice unfolding of (b)

Fig. 7: Examples of a cube, a cuboid, and a lattice unfolding

A (G!, ~!, I!)-cuboid is defined as a box with edge
lengths G!, ~!, and I! along the G-axis, the ~-axis, and the
I-axis, respectively, for some positive integers G, ~, and I
(Fig. 7(b)). Here, G  ~  I is assumed without loss of gen-
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(a): 0 = 1 = 1, gcd(0, 1) = 1,
! =

p
2, G = ~ = I = 2

(b): 0 = 1 = 2, gcd(0, 1) = 2,
! = 2

p
2, G = ~ = I = 1

Fig. 8: Two (2
p

2, 2
p

2, 2
p

2)-cuboids which can be regarded
as the same shape. This paper only focuses on (a).

erality. We only consider the cuboids that satisfy gcd(0, 1) =
1 because the (2(G!), 2(~!), 2(I!))-cuboid (multiplied
(G!, ~!, I!)-cuboid by 2) and the (G(2!), ~(2!), I(2!))-
cuboid (multiplied (2!, 2!, 2!)-cuboid by G, ~, I) can be
regarded as the same shape (see Fig. 8).

2.2 Definition of overlapping lattice unfoldings

A lattice unfolding of a cuboid is a planar shape obtained by
cutting the face of the cuboid along the edges of unit squares
(Fig. 7(c)). As we will mention in Lemma 7, the cutting line
of the lattice unfolding forms a tree structure.

On a lattice unfolding, the original cuboid’s unit squares
are arranged planarly so that their edges are glued together.
Any pair of unit squares not adjacent to each other on the
surface can be classified into positional relationships as fol-
lows:

(1) Overlap in the same position (Fig. 9(a)).
(2) Share one edge (Fig. 9(b)).
(3) Share one vertex (Fig. 9(c)).
(4) Without sharing any edges or vertices.

Herein, we say that an unfolding is faces-in-touch if it has
a pair of unit squares satisfying (1). Similarly, we define
edges-in-touch and vertices-in-touch for (2) and (3), respec-
tively. When all pairs of unit squares not adjacent on the
surface satisfy (4), it is called non-overlapping. When any
of the conditions (1), (2), or (3) are satisfied, it is termed
overlapping. Note that the inclusion relationship {faces-in-
touch unfoldings}⇢{edges-in-touch unfoldings}⇢{vertices-
in-touch unfoldings} holds for any cuboid.

2.3 Representation of polyhedra using graphs

Let & be a polyhedron, and ⌧& = (+&, ⇢&) be the graph
such that +& is the set of the vertices of & and ⇢& is the set
of the edges of &. We call this graph an edge representation

graph of &. An edge unfolding of & can be regarded as an
unfolding obtained from a subgraph of ⌧&. The following
lemma holds:

Lemma 6 (See e.g., [2], Lemma 22.1.1). A subgraph ⌧ ⇢
⌧& generates an unfolding if and only if ⌧ is a spanning

tree of ⌧&.

(a): Faces-in-touch [14]

(b): Edges-in-touch

(c): Vertices-in-touch

Fig. 9: Examples of overlapping lattice unfoldings in the
(1, 2, 3)-cuboid

Fig. 10: Example of a cutting line in a (3, 3, 3)-cuboid. The
thick lines form a tree that includes all the lattice cube’s
vertices (the starred ones).

Now, we introduce a new graph representation for lat-
tice unfoldings. Let ⇠ be a cuboid. We define the lattice

representation graph ⌧⇠ = (+⇠ , ⇢⇠ ) such that +⇠ is the set
of vertices of unit squares on the face of ⇠, and ⇢⇠ is the
set of edges of the unit squares. The lattice unfolding is one
of the general unfolding techniques that allows for cutting
the surface across faces. Thus, we can apply the following
lemma, which holds for the general unfolding:

Lemma 7 (see Fig. 10; [14], Theorem 1, Theorem 3). Let

⌧⇠ = (+⇠ , ⇢⇠ ) be the lattice representation graph of a

cuboid ⇠, and let ((+⇠ ) ⇢ +⇠ be the set of lattice points lo-

cated at the vertices of ⇠. Then, the following are equivalent

for a subgraph ⌧ ⇢ ⌧⇠ :

1. ⌧ yields a lattice unfolding.

2. ⌧ is a tree that satisfies ((+⇠ ) ⇢ ⌧, and for any vertex

{ in ⌧, if deg({) = 1, then { 2 ((+⇠ ) (where deg({) is

the degree of vertex {).
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(a): All pairs (b): Minimum pairs

Fig. 11: Pairs of faces to check for overlap in an edge unfold-
ing of a (1,1,1)-cuboid

(a) (b): MOPE (c): Non-MOPE

Fig. 12: (a) An edge unfolding in a cube cut-off corners
(Fig. 1). (b) (a)’s MOPE. Removing any face results in
non-connected structures, contradicting the definition of par-
tial edge unfoldings. (c) Removing the gray face results in
MOPE.

2.4 Methods for checking the overlap

Herein, we introduce a method for verifying the non-
existence of overlapping edge unfoldings for polyhedron &.

To show the non-existence of overlapping edge unfold-
ing in &, we check the overlapping for all pairs of faces of all
edge unfoldings. For example, a (1, 1, 1)-cuboid’s edge un-
folding has 6⇠2 = 15 pairs of squares that need to be checked
for overlap (see Figure 11(a)). On the other hand, focusing
on the symmetry of relative positions, the number of pairs
that actually need to be checked is six (see Fig. 11(b)). In
other words, if we check that none of them overlap, we can
conclude that all edge unfoldings do not overlap.

An algorithm called rotational unfolding has been de-
veloped with a focus on this point [9]. Herein, let polyhedron
& be as a dual graph ⇡ (⌧&) = (+⇡ , ⇢⇡), where +⇡ is a set
of faces in the polyhedron, and ⇢⇡ is a set of edges such that
two vertices are adjacent if and only if the corresponding two
faces are neighbors. Let a partial edge unfolding be a flat
polygon formed from a set of faces corresponding to a con-
nected induced subgraph of ⇡ (⌧&). Rotational unfolding
can enumerate minimal overlapping partial edge unfoldings

(MOPEs), partial edge unfoldings with the minimal faces
required to connect two overlapping faces. Figure 12 shows
an example of a MOPE and a non-MOPE. Also, partial edge
unfoldings in Fig. 11(b) are MOPEs. In rotational unfolding,

…

…
…

…

(a): Non-MOPL

…
…

(b): MOPL

Fig. 13: Examples of partial lattice unfoldings obtained by
directly using rotational unfolding. Removing the plaid faces
results in (b)’s MOPL.

each MOPE is enumerated by “rolling the polyhedron on a
plane from the state that one face is bottom to the state that
another is bottom.” For details on rotational unfolding, refer
to [9].

3. Results

This study presents the following theorem for cuboids:

Theorem 8.

• Both the (1, 1, 1)-cuboid and (
p

2,
p

2,
p

2)-cuboid have

no overlapping lattice unfolding.

• The (1, 1, 2)-cuboid has neither faces-in-touch lattice

unfolding nor edges-in-touch lattice unfolding, but it

has a vertices-in-touch lattice unfolding.

• Both the (1, 2, 2)-cuboid and (2, 2, 2)-cuboid have no

faces-in-touch lattice unfolding, but they have edges-

in-touch lattice unfolding and vertices-in-touch lattice

unfolding.

• Any other type of cuboids have faces-in-touch lat-

tice unfoldings, edges-in-touch lattice unfoldings, and

vertices-in-touch lattice unfoldings.

Hereafter, we explain the non-existence side of this The-
orem in Section 3.1 and the existence side in Section 3.2.

3.1 The method to check the non-existence of overlapping
lattice unfoldings by computational experiment

First, we show a method to check the non-existence of over-
lapping lattice unfoldings through a computational exper-
iment using rotational unfolding described in Section 2.4.
However, using it directly for lattice unfolding is inefficient
for the search. In this section, we present the method of
extending rotational unfolding to lattice unfolding and the
results of computational experiments.

In the rotational unfolding for polyhedron &, the dual
graph ⇡ (⌧&) of its edge representation graph ⌧& is used.
Accordingly, we consider the dual graph ⇡ (⌧⇠ ) of the lat-
tice representation graph ⌧⇠ for the lattice unfolding of a
cuboid ⇠. However, using rotation unfolding directly for
⇡ (⌧⇠ ) results in including partial lattice unfoldings that
are not minimal overlapping partial lattice unfoldings (in
short, MOPL; see example in Fig. 13). Including partial lat-
tice unfoldings that are non-MOPLs reduces efficiency when
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…

(a): “CCRCL”

…

(b): “CLRRCRLLC”

Fig. 14: Example of strings corresponding to partial lattice
unfoldings

checking for the existence of overlapping lattice unfoldings.
Here, we introduce the following characters for information
about the “direction of rolling when viewed from one step
before”:

R: Roll to the right from one step before.
C: Roll straight from one step before.
L: Roll to the left from one step before.

Therefore, the partial lattice unfolding obtained directly us-
ing the rotational unfolding can be represented as a string
(see example in Fig. 14). In the rotational unfolding, the first
step is to roll straight ahead without loss of generality, so the
string corresponding to the partial lattice unfolding obtained
in the first step is “C”. Here, we can show the following
lemma:

Lemma 9. When the strings corresponding to the partial lat-

tice unfoldings include “RR” or “LL”, they are non-MOPLs.

Proof. In the second step of the rotational unfolding, we have
three cases: (1) rolling to the right (“CR”; Fig. 15(a)), (2)
rolling straight (“CC”; Fig. 15(b)), and (3) rolling to the left
(“CL”; Fig. 15(c)). If we repeat the action of rolling right,
or “RR”, twice after the second step, we get (1) “CRRR”
(Fig. 15(d)), (2) “CCRR” (Fig. 15(e)), and (3) “CLRR”
(Fig. 15(f)). For case (1), this situation cannot occur because
we have already used the face as part of the constructed par-
tial edge unfolding. For cases (2) and (3) (Fig. 15(e) and
Fig. 15(f)), these partial lattice unfoldings are non-MOPLs,
and removing the plaid faces results in MOPLs Fig. 15(a)
and Fig. 15(b). The same statement applies even if “RR”
appears not only in the first four steps but also at any point
during the rolling process. Similarly, the same can be said
for “LL”. ⇤

Therefore, if “RR” or “LL” appears during rolling, it is
a non-MOPL; there is no need to continue rolling, thereby
pruning the search.

When a cuboid has an overlapping lattice unfolding, we
can determine how they overlap using the following obser-
vation:

Observation 10. In rotational unfolding, compute the center

coordinates of the face at one endpoint, assuming its center

coordinates are (0, 0) (see Fig. 16(a)). Then, while rolling

(a): “CR” (b): “CC” (c): “CL”

(d): “CRRR” (e): “CCRR” (f): “CLRR”

Fig. 15: (a)-(c): Partial lattice unfoldings obtained through
two rotations (d)-(f): Partial lattice unfoldings obtained by
rolling twice to the right after two rotations

… …

…

(a): The coordinates of the
center of each face

… …
…

(b): The coordinates of the cen-
ter of the face at the other end-
point

Fig. 16: The method to check for overlap in rotational un-
foldings, including their type.

the cuboid sequentially, compute the center coordinates of

the face at the other endpoint in the partial lattice unfold-

ing. We can determine the type of unfolding based on the

coordinates of the center of the face at the other endpoint:

• If the coordinate is (0, 0), it is a faces-in-touch unfolding

(a plaid face in Fig. 16(b)).

• If the coordinates are (0, 1), (�1, 0), or (0,�1), it

is an edges-in-touching unfolding (polka dot faces in

Fig. 16(b)).

• If the coordinates are (1, 1), (1,�1), (�1,�1), or

(�1, 1), it is a vertices-in-touch unfolding (striped faces

in Fig. 16(b)).

We implemented the method of extending rotational
unfolding to lattice unfolding and obtained the non-existence
results shown in Theorem 8. Experiments were conducted
on a Mac OS Venture computer with an Apple M1 Max
chip and 64GB of memory. Tables 1 to 3 show the running
times of computational experiments for each lattice cuboid.

These experiment results include verifying the previous
results [15] and [16].

3.2 Proving the existence of overlapping lattice unfoldings
by constructing specific examples

Hereafter, we prove the existence side of the statements of
Theorem 8 by showing specific overlapping unfoldings.
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Table 1: The running time to demonstrate the non-existence
of faces-in-touch unfoldings.

Lattice cuboid # Faces # Edges # Vertices Time
(1, 1, 1)-cuboid 6 12 8 0.3s
(1, 1, 2)-cuboid 10 20 12 0.6s
(1, 2, 2)-cuboid 16 32 18 1.6s
(2, 2, 2)-cuboid 24 48 26 56.9s
(
p

2,
p

2,
p

2)-cuboid 12 24 14 0.7s

Table 2: The running time to demonstrate the non-existence
of edges-in-touch unfoldings.

Lattice cuboid # Faces # Edges # Vertices Time
(1, 1, 1)-cuboid 6 12 8 0.3s
(1, 1, 2)-cuboid 10 20 12 0.5s
(
p

2,
p

2,
p

2)-cuboid 12 24 14 0.7s

Table 3: The running time to demonstrate the non-existence
of vertices-in-touch unfoldings.

Lattice cuboid # Faces # Edges # Vertices Time
(1, 1, 1)-cuboid 6 12 8 0.4s
(
p

2,
p

2,
p

2)-cuboid 12 24 14 0.7s

3.2.1 Case of ! = 1

From Theorems 2 and 3, faces-in-touch, edges-in-touch, and
vertices-in-touch unfoldings exist for the (G, ~, I)-cuboid,
where I � 3. For the remaining cases for the case of ! = 1,
we provide specific examples of unfoldings as follows:

Lemma 11.

• The (1, 1, 2)-cuboid has a vertices-in-touch unfolding

(Fig. 17(a)).

• The (1, 2, 2)-cuboid has both an edges-in-touch un-

folding (Fig. 17(b)) and a vertices-in-touch unfolding

(Fig. 17(c)).

• The (2, 2, 2)-cuboid has both an edges-in-touch un-

folding (Fig. 17(d)) and a vertices-in-touch unfolding

(Fig. 17(e)).

3.2.2 Case of ! =
p

2, ! =
p

5, and ! =
p

10

From the inclusion relationship between the edges-in-touch
and vertices-in-touch unfolding, we have only to show the
existence of the faces-in-touch unfolding.

A faces-in-touch unfolding exist for the (
p

2,
p

2, 2
p

2)-
cuboid (Fig. 17(f)). From now on, we will refer to this
partial lattice unfolding as &! (Fig. 18). Moreover, the
(
p

2,
p

2, 2
p

2)-cuboid can be unfolded to include the partial
lattice unfolding &! because &! can be embedded in the
three faces in front of the (

p
2,
p

2, 2
p

2)-cuboid (see Fig. 19).
Note that we have to fold the three triangular faces: a plaid
face in the positive ~-axis direction, a polka dot face in the

(a): A (1, 1, 2)-cuboid (b): A (1, 2, 2)-cuboid

(c): A (1, 2, 2)-cuboid (d): A (2, 2, 2)-cuboid

(e): A (2, 2, 2)-cuboid (f): A (
p

2,
p

2, 2
p

2)-cuboid

Fig. 17: Overlapping partial lattice unfolding obtained by
cutting along the red lines

Fig. 18: Overlapping partial lattice unfolding &!

positive G-axis direction, and a striped face in the positive G-
axis direction. This embedding method can also be applied
to the (G

p
2, ~

p
2, I

p
2)-cuboid, where G, ~, I � 2, as shown

in Fig. 20.
The same embedding can be performed for cases where

! =
p

5 and ! =
p

10 (see Fig. 21(a) and Fig. 21(b)).

3.2.3 Case of ! �
p

13

The partial lattice unfolding &! can be embedded in the
(
p

13,
p

13,
p

13)-cuboid, as shown in Fig. 21(c). Here, we
present the following lemma:
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Fig. 19: &! can be embedded in the three faces in front of
the (

p
2,
p

2, 2
p

2)-cuboid.

…
…

…

…
…

……

… …
…

…

Fig. 20: &! can be embedded in the (G
p

2, ~
p

2, I
p

2)-
cuboid, where I � 2.

(a): The (
p

5,
p

5,
p

5)-cuboid (b): The (
p

10,
p

10,
p

10)-
cuboid

(c): The (
p

13,
p

13,
p

13)-
cuboid

(d): The (!, !, !)-cuboid,
where ! �

p
13

Fig. 21: &! can be embedded in each cuboid.

Lemma 12. The partial lattice unfolding &! can be embed-

ded in the (!, !, !)-cuboid, where ! �
p

13.

Proof. Consider the three unit squares with vertex { in com-
mon (Fig. 21(d)). The three-unit squares enclosed in blue
in Fig. 18 can be embedded in this point. Let ( be the side
face of a cone with the length of axis

p
13 and a central

angle of 270� (Fig. 22). Hereafter, ( is called the cone.
Since the central angle of the cone ( is 270�, the three unit
squares enclosed in blue in Fig. 18 can be embedded with
vertex { coinciding. Additionally, due to the Euclidean dis-
tance between the point { and the furthest point | in Fig. 18

Fig. 22: The side face of a cone with the length of axis
p

13
and a central angle of 270�. By rounding the left fan shape,
the right solid is obtained. We can embed &! in this.

Fig. 23: The cone ( can be embedded in the three faces in
front of the (!, !, !)-cuboid, where ! �

p
13.

being
p

22 + 32 =
p

13, the remaining faces, except for the
three faces enclosed in blue, can be embedded as shown in
Fig. 22 (right). The cone ( can be embedded in the three
front faces of a (!, !, !)-cuboid where ! �

p
13, as shown

in Fig. 23. From the fact that the cone ( can be embedded
in a (!, !, !)-cuboid and that &! can be embedded on top
of the cone (, we can concluded that &! can be embedded
in the three front faces of a (!, !, !)-cuboid. ⇤

From this lemma, a faces-in-touch unfolding exists for
the (G!, ~!, I!)-cuboid in any of the G, ~, I, where ! �

p
13.

The same can be said for edges-in-touch and vertices-in-
touch unfolding due to the inclusion relationship.

4. Conclusion

In this paper, we completely clarified the condition for a
cuboid to have overlapping lattice unfoldings. This result is
one approach to bridging the gap between edge unfoldings
and general unfoldings. We can also extend the idea of
considering lattice cutting lines on faces to the triangular
lattice unfolding of an octahedron or icosahedron.

Furthermore, another approach to bridging this gap is
to add cutting lines along the diagonals of the faces of con-
vex regular-faced polyhedra. We believe that considering
unfoldings with various discrete cutting lines on the faces
could provide insights into solving Open Problem 1.
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