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SUMMARY In future 6G Vehicle-to-Everything (V2X) Network, task 
offloading of mobile edge computing (MEC) systems will face complex 
challenges in high mobility, dynamic environment. We herein propose a 
Multi-Agent Deep Reinforcement Learning algorithm (MADRL) with 
cloud-edge-vehicle collaborations to address these challenges. Firstly, we 
build the model of the task offloading problem in the cloud-edge-vehicle 
system, which meets low-latency, low-energy computing requirements by 
coordinating the computational resources of connected vehicles and MEC 
servers. Then, we reformulate this problem as a Markov Decision Process 
and propose a digital twin-assisted MADRL algorithm to tackle it. This 
algorithm tackles the problem by treating each connected vehicle as a agent, 
where the observations of agents are defined as the current local 
environmental state and global digital twin information. The action space 
of agents comprises discrete task offloading targets and continuous resource 
allocation. The objective of this algorithm is to improve overall system 
performance, taking into account collaborative learning among the agents. 
Experimental results show that the MADRL algorithm performed well in 
computational efficiency and energy consumption compared with other 
strategies. 
key words: multi-agent deep reinforcement learning, mobile edge 
computing, task offloading, cloud-edge-vehicle system. 

1. Introduction 

The sixth generation (6G) Vehicle-to-Everything (V2X) 
networks [1][2], as an integral part of the next-generation 
communication technology, are poised to bring 
unprecedented transformations to autonomous driving. With 
the rapid development of the digital society, there is an 
increasingly urgent demand for future communication 
networks to handle large-scale data, support ultra-low 
latency applications, and achieve comprehensive intelligent 
connectivity. However, high mobility and dynamic 
environment pose more complex challenges for task 
offloading in mobile edge computing (MEC) systems.  

In recent years, driven by MEC, artificial-intelligent 
assisted methods have achieved significant success in the 
field of wireless communications [2] [3]. Specifically, Deep 

Reinforcement Learning (DRL), widely applied in network 
optimization to make optimal decisions, has garnered 
considerable attention in the edge computing domain. For 
instance, Dudu et al. [5] proposed a reinforcement learning 
algorithm based on Deep Deterministic Policy Gradient 
(DDPG) to achieve optimal computation offloading. Li et al. 
[6] modeled the offloading problem as a Markov decision 
process and hence employed the Actor-Critic algorithm to 
minimize service costs. 

Recent evidences suggest that digital twin (DT), an 
approach to providing real-time replicas of physical objects, 
continuously synchronizing with physical objects, and 
optimizing the operation of physical systems, will play a 
crucial role in 6G networks [9]. Some studies integrate to 
DT with wireless communications to enhance system 
performance. Lu et al.[11] introduced DT into wireless edge 
networks, proposing the DT edge network model to assist 
MEC servers in making optimal edge computing decisions 
by perceiving dynamic network states. The results of these 
studies demonstrate the effectiveness of DT in reducing 
latency and optimizing the edge computing performance. 

However, due to the high mobility and dynamic 
environment of mobile networks, MEC encounters such 
thorny challenges. Therefore, MEC needs to flexibly 
schedule computing resources to meet the high demands of 
6G V2X networks.  

To address these issues, we build the model of the task 
offloading problem in the cloud-edge-vehicle system. 
Furthermore, we develop a Multi-Agent Deep 
Reinforcement Learning (MADRL) algorithm to find 
optimal task offloading decisions and resource allocation 
strategies. The main contributions of this paper are 
summarized as follows: 

● We propose a task offloading and resource allocation 
problem in the cloud-edge-vehicle system. The DT is 
integrated with the model to synchronize real-time 
network status and assist to make optimal decisions. 

● We reformulate task offloading and resource allocation 
as a partially observable Markov Decision Process, 
where the goal of each CV agent is to select the best 
processing device and request appropriate resources to 
handle incoming tasks, thereby minimizing the system 
cost of task execution (i.e., energy consumption and 
latency). 
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● We propose a Digital Twin-assisted MADDPG (DT-
MADDPG) algorithm, where CVs act as agents make 
independent actions and train critic networks. In this 
algorithm, we tackle the problem of mixed discrete and 
continuous action spaces while making sure to keep the 
coupling constraints between different variables. 

The structure is as follows. In Section 2, we present a 
review of related work. In Section 3, we outline the cloud-
edge-vehicle system. In Section 4, we formulate the task 
migration problem to minimize latency and energy 
consumption. In Section 5, we present an MDP formulation 
and propose a DT-MADDPG algorithm. In Section 6, the 
proposed approach is validated through experimental data. 
Finally, Section 7 summarizes the paper. 

2. Related work 

To meet the evolving demands of future networks, a range 
of technologies has emerged, enabling MEC systems to 
achieve higher performance. Among these emerging 
technologies, DT and artificial intelligence (AI) have found 
extensive applications in MEC systems. 

2.1 Application of DT in MEC 

In recent years, DT has garnered increasing attention in 
various application scenarios such as mobile networks and 
the Internet of Things (IoT). In industrial settings, Tao et al. 
[10] provided a comprehensive overview of the current 
development status and major applications of DT in 
achieving intelligent manufacturing. 

Recently, there has been growing interest in integrating 
DT with mobile edge networks. The paradigm of DT edge 
network [13] has emerged, utilizing DT to enhance the 
efficiency and quality of MEC applications. Lin et al. [14] 
investigated the potential of applying DT to wireless 
networks, namely DT. The authors further delineated typical 
application scenarios of DT, including manufacturing, 
healthcare, intelligent transportation systems, and smart 
cities. Tang et al. [15] proposed a DT-Assisted Resource 
Allocation framework for personalized Industrial Internet of 
Things (IIoT) services in Industry 4.0, addressing challenges 
in network slicing and resource allocation through 
distributed DRL. Sun et al. [16] proposed the use of dynamic 
DT and federated learning for air-ground network 
applications. When designing dynamic incentive schemes 
for federated learning, they also considered changing DT 
biases and network dynamics. 

As part of integrating DT into network virtualization, 
Shen et al. [12] proposed a new virtualization architecture 
called holistic network virtualization, which aims to enhance 
the capability of managing networks and providing services 
to end-users. Lu et al. [7] designed a novel DT wireless 
network model, introducing DT into wireless networks to 
alleviate unreliable and long-distance communication 
between users and base stations, where user data is 

synchronized to the base stations to construct corresponding 
DT. Inspired by the aforementioned works, we constructed 
a virtual network to capture the real-time dynamics of 
computing network resources through a DT, thereby 
addressing the issue of real-time task resource allocation 
caused by resource fluctuations in the computing network. 

2.2 Application of AI in MEC  

To enhance resource utilization, AI has emerged as a key 
enabler for resource allocation in MEC applications. DRL 
has been widely adopted to optimize resource allocation for 
efficient edge computing. In order to reduce long-term total 
latency and energy costs, Zhang et al. [17] investigated the 
cloud-edge-end cooperative partial task offloading and 
resource allocation problem in the IIoT and proposed an 
improved decentralized multiagent DRL algorithm to 
optimize task offloading and resource allocation decisions. 
Liu et al. [18] addressed the problem of multi-user 
computation offloading and wireless caching resource 
allocation in vehicular edge computing systems, focusing on 
linearly related requests, and employed a DDPG algorithm 
to optimize execution latency. Zhao et al. [19] utilized an 
optimization-driven hierarchical DDPG framework to 
achieve performance optimization through inner and outer 
loop learning methods and multiagent extensions. Lin et al. 
[20] proposed an algorithm that combines DRL and linear 
programming to address the mixed-integer nonlinear 
programming problem, optimizing the energy efficiency of 
unmanned aerial vehicles and the fairness of offloading in 
MEC scenarios.  

Inspired by the considerations mentioned above, we 
propose a novel approach that utilizes DT to assist the entire 
process of task offloading, including optimization of task 
offloading targets and resource allocation. We assume that 
each user generates only one task at any given moment, and 
each edge server (ES) has limited computing resources and 
wireless transmission bandwidth, without restrictions on the 
number or size of tasks it can receive. During the task 
offloading process, several additional considerations need to 
be taken into account. During the task offloading process, 
several factors merit consideration. Primarily, we should 
determine whether tasks should be locally computed or 
offloaded to ESs. Additionally, if CVs opt to offload tasks to 
ESs the wireless transmission power becomes a 
consideration. Furthermore, when an ES is tasked with 
serving multiple CVs, optimizing the allocation of limited 
wireless transmission bandwidth and CPU frequency 
becomes paramount. Given the complexity of these issues 
and the highly dynamic nature of the environment, 
addressing these challenges inherently presents significant 
difficulties.  

In the following sections, we propose a DT-MADDPG 
algorithm to tackle the problem of adaptive real-time 
solutions and intend to undertake long-term systematic 
performance optimization. As our decision variables involve 
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both discrete and continuous variables, although MADDPG 
can only address continuous variables, we plan to improve 
the algorithm to accommodate our problem. 

3. System Model 

In comparison to the existing 5G V2X networks, future 6G 
V2X networks offer significant advancements in flexibility, 
resource management, and intelligence. The current 5G 
V2X networks rely on a combination of centralized cloud 
computing and relatively static Multi-access Edge Compu-
ting platforms, with pre-allocated resources and predefined 
rules for task offloading. In contrast, 6G V2X networks 
employ a cloud-edge-vehicle system architecture, with 
dynamic deployment of edge nodes and integration of 
lightweight DT technology. This allows real-time monitor-
ing and updating of edge server status, enabling intelligent 
and adaptive resource management. Additionally, 6G V2X 
leverages machine learning for complex decision-making, 
ensuring ultra-low latency, high bandwidth, and efficient 
resource utilization. These enhancements make 6G V2X 
networks better suited for supporting complex and diverse 
V2X applications.[23] 

3.1 Network Model 

Fig. 1 shows the diagram of the designed cloud-edge-vehicle 
system architecture, the set of CV and ES is represented by 

{1,...., }M   and {1,..., }N  , where i , j  . 
we use ic and js respectively represents the i-th CV and j-th 
ES. The designed cloud-edge-vehicle system model 
comprises the CVs layer, access layer, and task transfer 
layer: 
• CVs Layer: This layer consists of CVs, allowing random 

movement in the horizontal plane. In each time slot, each 

CV generates only one computationally intensive task, 
which is considered indivisible as a whole. The tasks are 
initiated by CVs and can also be computed locally within 
the CVs layer. 

• Access Layer: In the access layer, CVs connect 
wirelessly to nearby ESs. Tasks can be computed by 
these ESs or accessed by them to enter the MEC network. 

• Task Transfer Layer: In the task transmission layer, ESs 
connect to the MEC network, and tasks can be 
transmitted within the MEC network via wired 
connections. The target ESs provide computational 
services to fulfill the computational requests from CVs. 
To perceive the dynamic distribution of computational 
capabilities, DT runs in ESs to replicate their real-time 
states, especially available CPU frequency and available 
bandwidth. 

We define a lightweight DT to reflect the temporal 
variability of computing resource, and assume that DT runs 
on the edge cloud. The definition of the computing 
capability DT for ES js  at the time slot t is as follows: 

        Θ ,j jt f t b tjDT             (1) 

where ( )jf t  represents the available CPU frequency of js  
at the time slot t, ( )jb t  is the available bandwidth of js  at 
the time slot t. The connected DT in the ESs form a DT. We 
define the DT as follows: 

1{ ,..., } NDT DTDT                     (2) 

The DT is an innovative technological approach designed 
to facilitate the collection, sharing, and updating of real-time 
status information to support decision-making processes. 
Through the DT, CVs can make offloading decisions based 
on real-time status information, thereby effectively 
managing resources and optimizing system performance. 

Fig. 1  Architecture of the cloud-edge-vehicle system. 
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Upon CV decision-making, the DT immediately updates to 
reflect the latest system status. This instantaneous updating 
mechanism ensures that the next CV can access the updated 
global status information. This information includes all ESs’ 
available CPU frequency and available bandwidth, enabling 
decisions that are most suitable for the current state.  

In order to ensure that each CV receives the latest status 
information, at a time slot, the DT updates M times 
simultaneously. The efficient sharing and updating 
mechanism of information ensures robust decision support 
for CVs, contributing to the optimization of system 
performance. 

In terms of cost, DT's lightweight design incorporates 
only a minimal amount of critical state information, focus-
ing primarily on the CPU frequency and bandwidth of each 
ES, which results in very limited resource usage. During a 
time slot, DT's data transmission is less than 1 kbit, whereas 
the computational task data for CVs typically exceeds 1000 
kbit. Therefore, we consider the impact of DT on system 
storage, computational resources, and bandwidth to be 
negligible in the cloud-edge-vehicle system architecture. 

As for accuracy, our primary objective is to enhance task 
offloading efficiency through DT. To simplify the analysis 
and clearly demonstrate the potential of DT in improving 
system efficiency, we assume that the DT model in the 
system is completely accurate. 

3.2 Task Computation and Transmission Model 

We assume M CVs and N ESs in the network. In each time 
slot t  , each CV randomly generates a task, denoted as 

( )iD t   (in kbit). Tasks can be computed in three ways: 
locally, nearby ES computation, or distant ES computation. 
1) Local Computation 

In the local computation mode, tasks are executed locally 
on the CVs. The available CPU frequency of ic  is denoted 
as if , and the number of CPU cycles required to execute 
one task is denoted as ζ. Thus, the computation delay of 
executing task  iD t  locally can be written as: 

 
 

cmp
i

i

iD t
T

f t

 
                 (3) 

2) Nearby ES Computation 
In the nearby computation mode, tasks are offloaded from 

the CV to the ES at the access layer via wireless 
communication. Thus, the computation delay of executing 
task  iD t  through nearby ES computation can be written 
as: 

 
 
 

cmp
i

j

iD t
T

f t

 
                      (4) 

The transmission data rate of wireless communication is 
determined by available spectrum, interference, and total 
bandwidth. This paper adopts Orthogonal Frequency 

Division Multiple Access (OFDMA) [20] as the access 
mode for CVs. OFDMA divides the system bandwidth into 
multiple parallel orthogonal sub-channels. Due to the 
orthogonality between sub-carriers, there is no mutual 
interference between them. Therefore, OFDMA can achieve 
interference-free and parallel data transmission between 
multiple devices. The transmission data rate between ic  
and the nearby ES js can be expressed as: 

2

( ) ( ) ( )
( ) ( )log 1 i ij ij

ij ij
p t h t d t

r t b t




 
  

 
        (5) 

where  ijb t  is the bandwidth allocated to ic  by js ,  ip t  
is the transmission power of ic , and  ijh t  is the current 
channel gain between ic  and js  at time slot t . ( )ijd t 

 is 
calculated based on the positions of ic  and js : 

   ( ) || ||ij i jd t l t l t                   (6) 

where   is the path loss exponent between the CV and the 
ES, 2  is the background noise power. 

The wireless transmission delay can be expressed as: 

 
 

com
ij

ij

iD t
T

r t
                           (7) 

The task processing delay includes both the wireless 
transmission delay of the task and the computation delay of 
the ES, and can be expressed as: 

    cmp com
i ijjT T T                   (8) 

3)Remote ES Computation 
When the tasks to be executed exceed the maximum 

computational capacity of nearby ESs under the required 
latency constraints, the tasks need to be offloaded to distant 
ESs for collaborative computing. If a task needs to be 
offloaded from the access layer to the task transfer layer for 
computation, it is defined as Remote ES Computation. The 
task is first offloaded via wireless communication to the ES 

js  in the access layer, which then transfers it via wired 
communication to the target ES 'js  for computation. 

The wired transmission delay of  iD t   can be 

expressed as: 

 
 
 '

com
jj

j j

iD t
T

r t
                         (9) 

The wired transmission rate between js   and 'js   is 
represented as: 

 j j
j j

r t
d





                       (10) 

where   is the distance factor. 
The total task processing delay includes the wireless 

transmission delay of the task, the wired transmission delay, 
and the computation delay of 'js , and can be expressed as: 

   cmp com com
i ij jjjT T T T                    (11) 
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3.2 Energy Consumption Model 

Energy consumption consists of task computation energy 
consumption and task transmission energy consumption. 
The energy consumption for executing task  iD t locally is 
given by: 

     2
 i

cmp
i iiE t D t f                (12) 

where i  is the effective capacitance constant of the CPU 

chip. Similarly, if computation is performed on an ES, the 

energy consumption for  iD t  is: 

    2
 i

cmp
j jjE t D t f               (13) 

During the task transmission phase, energy consumption 
mainly occurs during uplink task transmission and downlink 
computation result transmission. Since the size of 
computation results is much smaller than that of 
computation tasks, we only consider the energy 
consumption of uplink task transmission. The energy 
consumption for ic  to transmit tasks to js  via wireless 
communication can be written as: 

 
   
 

com

i

i i
ij

j

D t p t
E

r t
                     (14) 

where  ip t  is the transmission power of ic . During local 
computation, when tasks are computed locally without 
considering transmission energy consumption, the energy  
consumption for ic  to process tasks is: 

    cmp
i iE t E t                     (15) 

For nearby ES computation, when tasks are executed 

within the wireless transmission range of ESs, the total 
energy consumption equals the sum of wireless transmission 
energy consumption and the energy consumption of the ES 
for computing tasks: 

      com cmp
i ij jE t E t E t            (16) 

For remote ES computation, when tasks are executed 
outside the wireless transmission range of ESs, the energy 
consumption equals the sum of uplink wireless transmission 
energy consumption from the CV to the nearest base station, 
the wired transmission energy consumption from the base 
station to the target ES, and the energy consumption of the 
target ES for computing tasks. Here, since the wired 
transmission energy consumption from the base station to 
the target ES is negligible, the total energy consumption for 
task offloading is: 

      com
'

cmp
i ij jE t E t E t                  (17) 

4. Problem Formulation in the Model 

In this section, we propose a new task offloading problem 
in the cloud-edge-vehicle system, aiming to improve energy 
efficiency and latency performance in task execution by 
optimizing task offloading strategies. We assume the system 
has M  CVs and N  ESs, the fundamental problem in the 
cloud-edge-vehicle system is to allocate offloading targets 
and resources for each task.  

As mentioned earlier, tasks can be computed locally, on 
nearby ES, or on remote ESs. Introducing a weighting factor 

iw  constructs the objective function, adjusting the weights 
of energy consumption and latency according to the task 
preferences of CV. The total cost over a procedure cycle 
consists of execution time cost and energy cost, represented 

Fig. 2 DT-MADDPG learning framework. 
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as follows: 

  
1 1

(1 )
T N

i i i i

t i

wT w E
 

  ψ               (18) 

where t is the current time slot in the iterative calculation 
process, The task offloading problem can be formulated as 
follows: 

min
x,p,f,b

ψ                  (19) 

 1: 0,1,2,..., , , ,iC x j N i     
  2 : ,max
ij j

i

C b B j


  


  

  3: ,max
ij j

i

C f F j


  


 

  4:0 ,i maxC p p i    

Constraint 1 represents the association policy between 
tasks from CV and target devices, where 0ijx    denotes 
local computation and ijx j  denotes computation on js . 
Constraints 2 and 3 ensure that the allocated computing 
resources for CVs do not exceed the maximum bandwidth 
and CPU frequency of ESs. Constraint 4 ensures that the CV 
transmission power is less than the maximum transmission 
power and non-negative. 

This problem is a combinatorial problem with highly 
complex coupled variables. Due to the challenges of task 
offloading in the cloud-edge-vehicle system, solving the 
task offloading problem through existing optimization 
algorithms is highly challenging and cannot effectively 
handle dynamic system conditions. We propose the use of 
MADRL to find the optimal solution to the problem. 

5. DT-MADDPG Task Offloading Algorithm  

5.1 DT Empowered Multiagent Network Model 

Since task offloading is a sequential decision-making 
process, we model the task offloading problem as a Markov 
Decision Process (MDP). Therefore, the task offloading 
problem can be solved using DRL based methods.  

In the cloud-edge-vehicle system model, each CV is 
treated as a DRL agent. These agents are responsible for 
issuing task requests and selecting task offloading strategies 
based on task requirements and system environment. In each 
time slot, the agents sequentially observe the state 
environment according to ID order. To ensure that the agents 
make optimal selections and maintain the coupling 
relationship of ESs resources, combined with the 
aforementioned DT, the observation of the agents is defined 
as the current local environmental state and the global DT 
information. 

Agent i takes action ia  in its local environment, and all 
agents take joint actions         1 2, , , ma t a t a t a t   . 

The immediate reward for the agents is obtained based on 
the joint action   a t . The system state  s t  evolves to the 
next state ( 1)s t    under the action  a t   with transition 
probability ( | , )P s s a . Then, agent i observes the new state 
from its current local environmental state and the DT. The 
state space, action space, and reward function of the 
established MDP model are as follows: 
• State Space: The state of cloud-edge-vehicle system 

consists of the task size  iD t , the distance between 
agent and server         i 1 2d , , ,i i iNt d t d t d t  , the 
channel gain of the link between agent and server 

        1 2, , ,i i iNt h t h t h t ih , the available 
computing capabilities of all servers 
        1 2, , , Nt f t f t f t  f ,and the available 

bandwidth of all servers         1 2, , , Nt b t b t b t  b . 
In this context,  t f   and  t b   are obtained from the 
DT. The local state observed by agent i  at time slot t  
is represented as follows: 

               , , , ,it D t t t t ti i is d h f b   (20)  

 The system state at time slot t is represented as follows: 
  ( ) { ( ), ( ), , ( )}t t t t 1 2 Ms s ss           (21) 

• Action Space: At time slot t, each agent i executes its 
action based on its observation ( )is t   and its action 
policy ( )ia t . The action determines the task offloading 
strategy ( )ix t , determining the target devices for task 
computation, transmission power ( )ip t , the allocation 
of CPU frequency ( )if t , and channel allocation strategy 

( )ib t . The action set can be formulated as follows: 
               i , , ,i i i it x t p t f t b ta        (22)  

• Reward Function: Since we consider a coordinated 
learning scheme for agents, the reward function aims to 
improve the overall system performance. The reward 
function for the agents is defined as follows: 

    )( (1 )i i i i it wT w E                 (23) 

During the multi-agent collaboration process, the overall 
reward function is designed based on global optimization 
objectives, defined as follows: 

    
1

M

i i

i

R t t


                  (24) 

where i  represents the weighting factor in the 
cumulative term.  

5.2 DT-MADDPG learning framework 

We employ a MADRL model for task offloading decisions 
in computational capability networks. We propose a DT-
MADDPG learning framework, as shown in Fig. 2. In the 
proposed framework, each agent interacts with its local 
environment to obtain state observations and takes actions 
for task offloading and resource allocation. During this 
process, agents need to exchange their local information to 
obtain global state and action observations for training Actor 
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and Critic networks. However, this exchange significantly 
increases transmission overhead and latency performance. 
To deal with these issues, we propose using DT to update 
and acquire the global state of agents. DT perfectly reflect 
the global system state at each moment, reducing the 
interaction cost among agents during the training process. 

In each time step loop, based on the observed local state 
( )is t  , agent i takes action ( )ia t  , and the DT updates 

synchronously according to ( )ia t .According to agent’s ID, 
the next agent i   in sequence, generates actions ( )ia t  
based on the updated local system state ( )is t  . After M 
iterations, based on the actions       1 2, ,) ,( mt a t a t a ta t   ，

the system state estimates rewards ( )Rt  and get next state 

 1s t  . 
In this framework, our output actions are divided into two 

categories: discrete actions and continuous actions. 
Innovatively, in the actor network, we handle the two types 
of actions output by the neural network separately: 
1) Continuous-to-discrete action processing: The neural 

network's output actions represent task transition 
decisions, determining the target computation node for 
executing these tasks, where ) 0(ix t   indicates local 
execution and ( )ix t j  indicates transmission to the 
j-th ES for execution, including 1+n discrete variables. 
After the neural network output is processed by the 
tanh activation function, the data is transformed into a 
continuous function   1,  1x  . Continuous actions 
are then projected onto the interval (0, n) through a 
linear transformation (LT) and subsequently rounded 
down (floor), resulting in {0, 1, ..., n} discrete actions. 
The specific process is illustrated in the Fig. 3. 

2) Continuous Action Normalization: To ensure the 
coupling relationships between the output actions of 
different agents, a tanh activation layer is added to the 
output actions of all continuous variables, including 
upline power, bandwidth, and CPU frequency. This is 
followed by linear transformation (LT) to constrain the 
action variables between 0 and 1. Let 

      , ,i i i ia p t f t b t  represent the actor network's 
output action, bounded between 0 and 1,  

      , ,max max max maxa p t f t b t  represent the maximum 

attainable value, and ia  represent the actual value. 
Then, the reward calculation can be recovered from the 
following equation: 

   *i i maxa a a                        (25) 

Because at the same time step t , if agent i offloads to 
server j, after the agent i executes the action, the 
remaining transmission bandwidth and computation 
resources on server j will change accordingly, allowing 
the maximum transmission bandwidth max ( )b t  and 
maximum computation resources max ( )f t  to be 
offloaded by the next agent i . The DT synchronizes 
the state, updating to 's  . Then, after the next agent i  
receives observation from the DT, it can recover from 
the following equation: 

    '
' ' *i i maxa a a                      (26) 

where 


'ia  represent the actual value of next agent i , 
'ia  represent the actor network's output action of next 

agent i , 

'
maxa  represent the maximum attainable value 

of next agent i . 

 We adopt a MADRL approach based on DT-MADDPG 
to find the optimal solution to the constructed problem. Each 
CV is modeled as a DDPG agent, which consists of an actor 
network and a critic network, both of which are deep neural 
networks. The neural network adopts a Multi-Layer 
Perceptron structure, consisting of three fully connected 

Algorithm 1 DT-MADDPG Learning Algorithm 

 1 Initialize critic network with weights Q
i  and actor 

network with weights i
 ; Initialize replay pool. 

2 for episode = 1 to N do 

3 Initialize the local network environment to state; 
4 for each time slot t = 1, 2,... do 

5 for each agent i= 1, 2,...,m do 

6 Observe current system state ts from DT; 
7 Select and take action i a towards ts , which 

is generated by actor network; 

8 Obtain reward ir according to Eq.22 
9 Update the new state to the DT; 
10 Get a new state observation 1ts  ; 
11 Store  1, , ,i i i is a r s   to replay pool; 
12 end for 
13         for each agent i= 1, 2,...,m do 

14 Take a batch of samples from the replay 
pool; 15 Update the Critic network Q

i ； 

16 Update the Actor network i
 ; 

17 Update Actor target network '
i
 and Critic 

target network 'Q
i ; 

18 end for 

19 end for 

20 end for 

Fig.3. Continuous-to-discrete action processing 
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layers, with each hidden layer having a dimension of 64. The 
input layer first receives input data and undergoes batch 
normalization for normalization. Following are two hidden 
layers, each utilizing Rectified Linear Units as the activation 
function to introduce non-linearity. Finally, the output layer  
produces network output, processed through the hyperbolic 
tangent function (tanh) to accommodate both discrete and 
continuous action spaces. Specifically, the Actor network 
takes the local state observed by agent i as input and outputs 
its selected action. On the other hand, the Critic network 
takes the global state and actions as input and outputs an 
estimate of the current state. For agent i, the parameters of 
its Actor and Critic networks are denoted as i

  and Q
i . 

During the training process, the parameters of the Actor 
network are updated using policy gradient methods, denoted 
as: 

   1 2log , , , , , ,
i

m
t t mi i s a Q s a a a w

 
          (27) 

where   is the learning rate of the actor network, and 
 1 2, , , , ,mQ s a a a w   is the action-value function. 

Similarly, the update for the Critic network is as follows: 

   1 2log , , , , ,Qi
i

Q Q m
Q t t mi i s a Q s a a a        (28) 

 In MADRL, the system state         1 2, , , ms t s t s t s t   is 
the shared global state among all agents, and the joint action 

        1 2, , , ma t a t a t a t   consists of actions from each 
agent. The reward         1 2, , , mr t r t r t r t   for each agent 
is calculated accordingly. The actor and critic networks are 
updated by sampling a small batch of data from the replay 
memory at each time slot. 

On the other hand, the parameters of the target networks 
are slowly updated by the main network every cycle. The 
parameters of the Actor target and Critic target networks, 

'
i
  and 

'Q
i , respectively, are updated as follows: 

 
 
 

' '

' '

1

1
i i

Q Q Q
i i

     
   

  
  

                   (29) 

where   is the temperature factor, which is utilized to 
regulate the degree of softness or hardness in this update. A 
larger value of     leads to a greater extent of parameter 
synchronization." 

The overall processes of the DT-MADDPG learning 
algorithm for task transfer are shown in Algorithm 1. 

6. Numerical Results 

In this section, the effectiveness of the DT-MADDPG task 
transfer algorithm is evaluated. To closely mimic real-world 
conditions, we carefully selected parameters based on 
existing studies and practical considerations. The experi-
mental scene is defined within a 1000m by 1000m 
coordinate range, where the positions of the CVs are 
randomly selected. The number of servers is set to 3, the 

number of vehicles is varied at {10, 20, 40, 60}, and vehicle 
speeds are set to {5, 10, 15, 20, 30} m/s. The task size per 
time slot of CVs is set to {20, 50, 100, 150, 200} kbit [24]. 

For communication channel characteristics, we referred 
to [25], which reflects common signal propagation 
conditions. Specifically, the transmission bandwidth is set to 
20 MHz, the maximum transmission power is set to 0.2 W, 
the noise power is set to -113 dBm, and the wireless 
communication radius of ES is set to 500 meters. For 
computational resources, referring to literature [7], we set 
the CPU frequency of CVs to 2 GHz and the CPU frequency 
of ESs to [5, 25] GHz. The network bandwidth is set to 20 
MHz, and the transmission power is set to 0.2 W. 

The transmission channel bandwidth is set to 20MHz, and 
the maximum transmission power of CV is set to 0.2W. The 
noise power is set to -113 dBm/Hz. The number of CVs in the 
simulation is set to 10, 20, 40, and 60, respectively. In the 
MADRL algorithm, the number of training iterations is set to 
50, the discount factor γ is set to 0.7, and the learning rate is set 
to 0.001. Detailed parameter settings are shown in Table 1. 

Table 1  Simulation Parameters 

 
Fig.4.  Convergence of different learning rates 

To analyze the training efficiency differences of the DT-
MADDPG algorithm under different training parameter 
settings, we selected learning rates of 0.001, 0.005, and 0.01 
for comparison in Figure 4, observing their impact on 
algorithm performance. As shown in Figure 4, the reward 
curves exhibit an overall upward trend, demonstrating the 
effectiveness of the algorithm. Additionally, lower learning 
rates lead to faster convergence of the CV's reward value. 
Specifically, we observed that when the learning rate was 

 Meaning value 
M Number of CVs {10，20，40，60} 
N Number of ESs 3  

uiD  Task size per time slot of CVs {20,50,100,150,200}kbit 

R 
 

Wireless communication radius 500m 

  White noise power -113dBm 

if  CPU frequency of CVs 2GHz 

jf  CPU frequency of ESs {5,10,15,20,25}GHz 
  Computation complexity of the 

task 
500cycle/bit 

ijB  bandwidth 20MHz  
max

ijP  transmission power 0.2W 

uiV  velocity of CVs {5,10,15,20,30}m/s 
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0.001, the algorithm converged at the 8th iteration and 
achieved the highest final convergence reward of 0.9501 
within the same training epochs. This indicates that smaller 
learning rates facilitate the algorithm to converge more 
stably to higher reward levels during training. When the 
learning rate increased to 0.005, the convergence speed 
slowed down, with the algorithm converging at the 10th 
iteration, and the final convergence reward slightly 
decreased to 0.9447. Further increasing the learning rate to 
0.01 resulted in the reward initially decreasing and then 
increasing, converging around the 18th iteration, with a final 
convergence reward of 0.8893. This suggests that larger 
learning rates introduce greater instability during the update 
process, making the algorithm more susceptible to the 
influence of local extreme values and challenging to achieve 
higher final convergence rewards. These results indicate that 
lower learning rates enable the DT-MADDPG algorithm to 
converge stably while reaching relatively optimal 
convergence levels. 

To demonstrate the superiority of the proposed algorithm, we 
also compare its performance with four benchmark strategy: 

1) All MEC Computing Strategy (AMCS): In this strategy, 
all tasks are offloaded to the MEC server for execution. To 
ensure experimental fairness, agents also utilize information 
collected and shared by the DT. The choice of AMCS as a 
benchmark strategy aims to evaluate the performance of 
offloading all tasks to the ES, providing insight into the system's 
performance under ideal conditions and serving as a reference 
for comparing other strategies. 

2) Random Offloading Computing Strategy (ROCS): In this 
strategy, tasks are randomly executed either at the MEC server 
or locally at the CV. ROCS is chosen to evaluate the system's 
performance under conditions of randomness, providing a 
baseline to measure the effectiveness of other optimization 
strategies. 

3) All Local Computing Strategy (ALCS): In this strategy, all 
tasks are computed locally on the CV without any offloading. 
The offloading cost consists of the local computing delay and 
the energy consumption incurred by the CPU. This strategy 
reflects the extreme case of relying entirely on local computa-
tion. By comparing with other offloading strategies, ALCS 
provides a reference to evaluate the advantages of task 
offloading in terms of performance. 

4)DDPG[22]: DDPG is a widely used deep reinforcement 
learning algorithm, suitable for solving task offloading and 
resource allocation problems in edge computing environments. 
Selecting DDPG as a benchmark aligns with common practices 
in the literature[26]. To ensure fairness in information access, 
we test the DDPG algorithm within our designed cloud-edge-
vehicle system framework, with the DT collecting and sharing 
ES resource information with the agent. The agent updates its 
actor and critic networks based on observations (including DT 
information and CVs’ states) and actions to maximize its 
expected return. By comparing the performance of the DT-
MADDPG algorithm, we highlight the advantages of multi-

agent learning in task offloading and resource allocation, 
demonstrating the potential application value of multi-agent 
systems in complex edge computing environments. 

 
Fig.5.  Reward vs. episodes 

In the model training process depicted in Figure 5, we 
evaluated the convergence of the proposed task offloading-
based strategy on DT-MADDPG. The simulation settings 
included 50 training episodes, each comprising 100 steps. In 
Figure 5, the x-axis represents the number of training 
iterations, while the y-axis represents the cumulative reward 
during the training process, i.e., the total cost incurred by 
each agent in terms of system delay and energy 
consumption. It can be observed that when the training set 
is less than 10, the agents fail to effectively respond to the 
environment. The agents accumulate training data over the 
initial 10 episodes and then continuously learn and improve 
their neural networks, thereby enhancing the model's 
accuracy. After 10 iterations, the cumulative reward begins 
to stabilize. Consequently, the training of the DT-MADDPG 
model gradually converges, indicating that the model has 
completed training and demonstrating its effectiveness. 
After convergence, the average system rewards obtained by 
DT-MADDPG, AMCS, DDPG, ROCS, and ALCS decrease 
sequentially. Additionally, ALCS exhibits more stable 
rewards post-training, attributed to minimal influence from 
CV mobility during local computations, resulting in smaller 
state changes and stable rewards post-convergence. The 
convergence behavior of the DDPG algorithm, 
characterized by initial reward reduction followed by 
subsequent increase, may be attributed to the exploratory 
nature of agents in the early stages of training. Agents 
typically engage in more exploration, attempting various 
actions to understand the environment. This may lead to 
greater reward volatility as agents have yet to discover the 
optimal strategy. As training progresses, agents gradually 
shift towards exploiting learned knowledge. 
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Fig.6.  Reward vs. Task Size 

In Figure 6, we compare the impact of different input data 
sizes of tasks on the average system reward of the agents. As 
shown, the average system reward of all offloading 
strategies decreases with increasing task input data size. This 
is because larger task input data sizes lead to greater 
computation latency, transmission latency, and energy 
consumption. From the comparison in this figure, it is 
evident that the average system reward of the task offloading 
strategy based on DT-MADDPG outperforms other 
offloading strategies. When the task input data size is small, 
the agents can execute tasks locally, which is less costly than 
offloading tasks to ESs. However, when the task input data 
size is large, most tasks are offloaded to ESs for execution, 
as the abundant computing resources of ESs can handle 
these computationally intensive tasks. As the task input data 
size increases from 100 kbit to 150 kbit, the average system 
reward of the proposed DT-MADDPG strategy increases by 
3.72%, while the average system costs of the AMCS, ROCS, 
DDPG and ALCS strategies increase by at least 9.48%, 
19.14%, 20.26% and 23.60%, respectively. This indicates 
that the average system rewards of all offloading strategies 
increase as the network load increases, while the average 
system costs of DT-MADDPG remain at a lower level.  

 

Fig 7.  Reward vs. CV velocity 

In Figure 7, we compare the impact of different mobility 
velocity of CV on the average system reward. As depicted, 
the average system reward of all offloading strategies 
decreases with increasing task input data size. When the 
mobility speed is slow, such as 5 m/s and 10 m/s, the average 

system rewards of various offloading strategies exhibit 
relatively stable performance. However, as the mobility 
speed increases to 15, 20, and 30 m/s, significant differences 
in average system rewards. Specifically, with increasing 
mobility speed, the average system reward of the DT-
MADDPG strategy remains relatively stable at a higher 
level, indicating its effectiveness in improving the average 
system reward under different mobility velocity. In contrast, 
the performance of the AMCS, ROCS and DDPG strategies 
deteriorates significantly at higher mobility velocity, with a 
noticeable decrease in average system reward. This may be 
attributed to these strategies' inability to effectively 
coordinate task allocation and execution in high-speed 
mobility environments, resulting in performance 
degradation. The ALCS strategy, which executes tasks 
locally and is unaffected by mobility, maintains a stable 
average system reward regardless of speed changes. As 
shown in the figure, when the CV speed is between 20 and 
25 m/s, the reward obtained by ALCS will be greater than 
the other four strategies. Therefore, it can be concluded that 
our strategy is more suitable for use when the CV speed is 
below 20 m/s. 

 
(a)E-cost and T-cost                  (b) Reward 

Fig.8. The impact of varying ES’s frequency on (a) E-cost and T-cost, (b) 
Reward 
 

In Figure 8(a), the blue bars represent the average energy 
consumption of the agents, denoted as E-cost, while the pink 
bars denote the average time delay of the agents, denoted as 
T-cost. In Figure 8(b), the curve illustrates the variation of 
rewards of the DT-MADDPG with changes in the maximum 
CPU frequency of the ESs, while keeping other conditions 
constant. With the increase in the computing capability of 
ES, the latency of task offloading significantly decreases, 
while energy consumption slightly increases. This is 
because the enhanced computing capability of ES 
accelerates the computation speed of tasks offloaded to the 
ESs. However, computational energy consumption is 
directly proportional to the computation frequency. As the 
computation frequency increases, the energy consumption 
also increases proportionally. Rewards are obtained by 
weighting energy consumption and latency. From the 
aforementioned figures, it can be observed that as the 
maximum computation frequency of ESs increases, the 
reward also increases. Therefore, this proves that the 
algorithm is adaptable to changes in CPU frequency. 
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(a)E-cost and T-cost                    (b) Reward 

Fig.9. The impact of varying CV numbers on (a) E-cost and T-cost, (b) 
Reward 
 

In Figures 9, comparing the average system costs of the 
four offloading strategies for different numbers of CVs, it's 
evident that with an increase in CVs quantity, the average 
system rewards for each offloading strategy decrease. As the 
number of CVs increase, the system's average reward 
decline, while both latency and energy consumption 
noticeably increase. This is because when a large number of 
tasks are offloaded to the same ES, the allocated 
computational resources for each CV decrease, leading to 
increased computational time delays and energy 
consumption. Consequently, the system's average rewards 
relatively decrease. Therefore, this proves that the algorithm 
is adaptable to changes in CVs numbers. 

7. Conclusion 

In this study, we investigated the joint optimization problem 
of task offloading and resource allocation in future 6G 
networks. To solve this problem, we built the cloud-edge-
vehicle system model and proposed a task offloading 
strategy based on DT-empowered DRL. This algorithm 
minimized the total system cost in terms of system latency 
and energy consumption. Through simulation experiments, 
we tested that the proposed strategy achieved better reward 
performance under different sizes of task input data, CVs’ 
mobility velocity, ES computing capacities, and CVs’ 
quantities. Additionally, the algorithm showed good 
adaptability in handling latency and energy consumption 
issues for varying ES computing capacities and CVs’ 
quantities. 

In future research, we will consider strategies of task 
partitioning, and allow tasks from an intelligent agent at a 
certain moment to be distributed across different ESs for 
computation to improve computational speed. Furthermore, 
we will investigate accurate energy consumption by DT’s 
synchronization information for better performance. 
Moreover, since the assumption that DT information is 
completely accurate may not hold true in the actual scene, 
future work should explore the performance of the proposed 
method under different accuracy levels of DT information to 
better reflect the real world situation. 
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