
DOI:10.1587/transinf.2024IIP0005

Publicized:2024/09/24

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

PAPER Special Section on Intelligent Information Processing Technology to be Integrated into Society

A Multi-Agent Deep Reinforcement Learning Algorithm for Task
offloading in future 6G V2X Network*

Jiakun LI†, Jiajian LI†,Yanjun SHI†a), Hui LIAN††, Haifan WU†, Nonmember

SUMMARY In future 6G Vehicle-to-Everything (V2X) Network, task
offloading of mobile edge computing (MEC) systems will face complex
challenges in high mobility, dynamic environment. We herein propose a
Multi-Agent Deep Reinforcement Learning algorithm (MADRL) with
cloud-edge-vehicle collaborations to address these challenges. Firstly, we
build the model of the task offloading problem in the cloud-edge-vehicle
system, which meets low-latency, low-energy computing requirements by
coordinating the computational resources of connected vehicles and MEC
servers. Then, we reformulate this problem as a Markov Decision Process
and propose a digital twin-assisted MADRL algorithm to tackle it. This
algorithm tackles the problem by treating each connected vehicle as a agent,
where the observations of agents are defined as the current local
environmental state and global digital twin information. The action space
of agents comprises discrete task offloading targets and continuous resource
allocation. The objective of this algorithm is to improve overall system
performance, taking into account collaborative learning among the agents.
Experimental results show that the MADRL algorithm performed well in
computational efficiency and energy consumption compared with other
strategies.
key words: multi-agent deep reinforcement learning, mobile edge
computing, task offloading, cloud-edge-vehicle system.

1. Introduction

The sixth generation (6G) Vehicle-to-Everything (V2X)
networks [1][2], as an integral part of the next-generation
communication technology, are poised to bring
unprecedented transformations to autonomous driving. With
the rapid development of the digital society, there is an
increasingly urgent demand for future communication
networks to handle large-scale data, support ultra-low
latency applications, and achieve comprehensive intelligent
connectivity. However, high mobility and dynamic
environment pose more complex challenges for task
offloading in mobile edge computing (MEC) systems.

In recent years, driven by MEC, artificial-intelligent
assisted methods have achieved significant success in the
field of wireless communications [2] [3]. Specifically, Deep

Reinforcement Learning (DRL), widely applied in network
optimization to make optimal decisions, has garnered
considerable attention in the edge computing domain. For
instance, Dudu et al. [5] proposed a reinforcement learning
algorithm based on Deep Deterministic Policy Gradient
(DDPG) to achieve optimal computation offloading. Li et al.
[6] modeled the offloading problem as a Markov decision
process and hence employed the Actor-Critic algorithm to
minimize service costs.

Recent evidences suggest that digital twin (DT), an
approach to providing real-time replicas of physical objects,
continuously synchronizing with physical objects, and
optimizing the operation of physical systems, will play a
crucial role in 6G networks [9]. Some studies integrate to
DT with wireless communications to enhance system
performance. Lu et al.[11] introduced DT into wireless edge
networks, proposing the DT edge network model to assist
MEC servers in making optimal edge computing decisions
by perceiving dynamic network states. The results of these
studies demonstrate the effectiveness of DT in reducing
latency and optimizing the edge computing performance.

However, due to the high mobility and dynamic
environment of mobile networks, MEC encounters such
thorny challenges. Therefore, MEC needs to flexibly
schedule computing resources to meet the high demands of
6G V2X networks.

To address these issues, we build the model of the task
offloading problem in the cloud-edge-vehicle system.
Furthermore, we develop a Multi-Agent Deep
Reinforcement Learning (MADRL) algorithm to find
optimal task offloading decisions and resource allocation
strategies. The main contributions of this paper are
summarized as follows:

● We propose a task offloading and resource allocation
problem in the cloud-edge-vehicle system. The DT is
integrated with the model to synchronize real-time
network status and assist to make optimal decisions.

● We reformulate task offloading and resource allocation
as a partially observable Markov Decision Process,
where the goal of each CV agent is to select the best
processing device and request appropriate resources to
handle incoming tasks, thereby minimizing the system
cost of task execution (i.e., energy consumption and
latency).

 †The author is with the School of Mechanical Engineering,
Dalian University of Technology, Dalian, China.
 ††The author is with Tebian Electric Apparatus Co., Ltd.,
Xinjiang, China.
 ∗This work was supported by Science and Technology
development program for Innovation-driven Development Pilot
Zone of Silk Road Economic Belt and Wuchangshi National
Independent Innovation Demonstration Zone under Grant
2023LQ02004.

a) E-mail: syj@ieee.org (Corresponding author)

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
2

● We propose a Digital Twin-assisted MADDPG (DT-
MADDPG) algorithm, where CVs act as agents make
independent actions and train critic networks. In this
algorithm, we tackle the problem of mixed discrete and
continuous action spaces while making sure to keep the
coupling constraints between different variables.

The structure is as follows. In Section 2, we present a
review of related work. In Section 3, we outline the cloud-
edge-vehicle system. In Section 4, we formulate the task
migration problem to minimize latency and energy
consumption. In Section 5, we present an MDP formulation
and propose a DT-MADDPG algorithm. In Section 6, the
proposed approach is validated through experimental data.
Finally, Section 7 summarizes the paper.

2. Related work

To meet the evolving demands of future networks, a range
of technologies has emerged, enabling MEC systems to
achieve higher performance. Among these emerging
technologies, DT and artificial intelligence (AI) have found
extensive applications in MEC systems.

2.1 Application of DT in MEC

In recent years, DT has garnered increasing attention in
various application scenarios such as mobile networks and
the Internet of Things (IoT). In industrial settings, Tao et al.
[10] provided a comprehensive overview of the current
development status and major applications of DT in
achieving intelligent manufacturing.

Recently, there has been growing interest in integrating
DT with mobile edge networks. The paradigm of DT edge
network [13] has emerged, utilizing DT to enhance the
efficiency and quality of MEC applications. Lin et al. [14]
investigated the potential of applying DT to wireless
networks, namely DT. The authors further delineated typical
application scenarios of DT, including manufacturing,
healthcare, intelligent transportation systems, and smart
cities. Tang et al. [15] proposed a DT-Assisted Resource
Allocation framework for personalized Industrial Internet of
Things (IIoT) services in Industry 4.0, addressing challenges
in network slicing and resource allocation through
distributed DRL. Sun et al. [16] proposed the use of dynamic
DT and federated learning for air-ground network
applications. When designing dynamic incentive schemes
for federated learning, they also considered changing DT
biases and network dynamics.

As part of integrating DT into network virtualization,
Shen et al. [12] proposed a new virtualization architecture
called holistic network virtualization, which aims to enhance
the capability of managing networks and providing services
to end-users. Lu et al. [7] designed a novel DT wireless
network model, introducing DT into wireless networks to
alleviate unreliable and long-distance communication
between users and base stations, where user data is

synchronized to the base stations to construct corresponding
DT. Inspired by the aforementioned works, we constructed
a virtual network to capture the real-time dynamics of
computing network resources through a DT, thereby
addressing the issue of real-time task resource allocation
caused by resource fluctuations in the computing network.

2.2 Application of AI in MEC

To enhance resource utilization, AI has emerged as a key
enabler for resource allocation in MEC applications. DRL
has been widely adopted to optimize resource allocation for
efficient edge computing. In order to reduce long-term total
latency and energy costs, Zhang et al. [17] investigated the
cloud-edge-end cooperative partial task offloading and
resource allocation problem in the IIoT and proposed an
improved decentralized multiagent DRL algorithm to
optimize task offloading and resource allocation decisions.
Liu et al. [18] addressed the problem of multi-user
computation offloading and wireless caching resource
allocation in vehicular edge computing systems, focusing on
linearly related requests, and employed a DDPG algorithm
to optimize execution latency. Zhao et al. [19] utilized an
optimization-driven hierarchical DDPG framework to
achieve performance optimization through inner and outer
loop learning methods and multiagent extensions. Lin et al.
[20] proposed an algorithm that combines DRL and linear
programming to address the mixed-integer nonlinear
programming problem, optimizing the energy efficiency of
unmanned aerial vehicles and the fairness of offloading in
MEC scenarios.

Inspired by the considerations mentioned above, we
propose a novel approach that utilizes DT to assist the entire
process of task offloading, including optimization of task
offloading targets and resource allocation. We assume that
each user generates only one task at any given moment, and
each edge server (ES) has limited computing resources and
wireless transmission bandwidth, without restrictions on the
number or size of tasks it can receive. During the task
offloading process, several additional considerations need to
be taken into account. During the task offloading process,
several factors merit consideration. Primarily, we should
determine whether tasks should be locally computed or
offloaded to ESs. Additionally, if CVs opt to offload tasks to
ESs the wireless transmission power becomes a
consideration. Furthermore, when an ES is tasked with
serving multiple CVs, optimizing the allocation of limited
wireless transmission bandwidth and CPU frequency
becomes paramount. Given the complexity of these issues
and the highly dynamic nature of the environment,
addressing these challenges inherently presents significant
difficulties.

In the following sections, we propose a DT-MADDPG
algorithm to tackle the problem of adaptive real-time
solutions and intend to undertake long-term systematic
performance optimization. As our decision variables involve

IEICE TRANS. ELEC

both discrete and continuous variables, although MADDPG
can only address continuous variables, we plan to improve
the algorithm to accommodate our problem.

3. System Model

In comparison to the existing 5G V2X networks, future 6G
V2X networks offer significant advancements in flexibility,
resource management, and intelligence. The current 5G
V2X networks rely on a combination of centralized cloud
computing and relatively static Multi-access Edge Compu-
ting platforms, with pre-allocated resources and predefined
rules for task offloading. In contrast, 6G V2X networks
employ a cloud-edge-vehicle system architecture, with
dynamic deployment of edge nodes and integration of
lightweight DT technology. This allows real-time monitor-
ing and updating of edge server status, enabling intelligent
and adaptive resource management. Additionally, 6G V2X
leverages machine learning for complex decision-making,
ensuring ultra-low latency, high bandwidth, and efficient
resource utilization. These enhancements make 6G V2X
networks better suited for supporting complex and diverse
V2X applications.[23]

3.1 Network Model

Fig. 1 shows the diagram of the designed cloud-edge-vehicle
system architecture, the set of CV and ES is represented by

{1,...., }M and {1,..., }N , where i , j .
we use ic and js respectively represents the i-th CV and j-th
ES. The designed cloud-edge-vehicle system model
comprises the CVs layer, access layer, and task transfer
layer:
• CVs Layer: This layer consists of CVs, allowing random

movement in the horizontal plane. In each time slot, each

CV generates only one computationally intensive task,
which is considered indivisible as a whole. The tasks are
initiated by CVs and can also be computed locally within
the CVs layer.

• Access Layer: In the access layer, CVs connect
wirelessly to nearby ESs. Tasks can be computed by
these ESs or accessed by them to enter the MEC network.

• Task Transfer Layer: In the task transmission layer, ESs
connect to the MEC network, and tasks can be
transmitted within the MEC network via wired
connections. The target ESs provide computational
services to fulfill the computational requests from CVs.
To perceive the dynamic distribution of computational
capabilities, DT runs in ESs to replicate their real-time
states, especially available CPU frequency and available
bandwidth.

We define a lightweight DT to reflect the temporal
variability of computing resource, and assume that DT runs
on the edge cloud. The definition of the computing
capability DT for ES js at the time slot t is as follows:

       Θ ,j jt f t b tjDT (1)

where ()jf t represents the available CPU frequency of js
at the time slot t, ()jb t is the available bandwidth of js at
the time slot t. The connected DT in the ESs form a DT. We
define the DT as follows:

1{ ,..., } NDT DTDT (2)

The DT is an innovative technological approach designed
to facilitate the collection, sharing, and updating of real-time
status information to support decision-making processes.
Through the DT, CVs can make offloading decisions based
on real-time status information, thereby effectively
managing resources and optimizing system performance.

Fig. 1 Architecture of the cloud-edge-vehicle system.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
4

Upon CV decision-making, the DT immediately updates to
reflect the latest system status. This instantaneous updating
mechanism ensures that the next CV can access the updated
global status information. This information includes all ESs’
available CPU frequency and available bandwidth, enabling
decisions that are most suitable for the current state.

In order to ensure that each CV receives the latest status
information, at a time slot, the DT updates M times
simultaneously. The efficient sharing and updating
mechanism of information ensures robust decision support
for CVs, contributing to the optimization of system
performance.

In terms of cost, DT's lightweight design incorporates
only a minimal amount of critical state information, focus-
ing primarily on the CPU frequency and bandwidth of each
ES, which results in very limited resource usage. During a
time slot, DT's data transmission is less than 1 kbit, whereas
the computational task data for CVs typically exceeds 1000
kbit. Therefore, we consider the impact of DT on system
storage, computational resources, and bandwidth to be
negligible in the cloud-edge-vehicle system architecture.

As for accuracy, our primary objective is to enhance task
offloading efficiency through DT. To simplify the analysis
and clearly demonstrate the potential of DT in improving
system efficiency, we assume that the DT model in the
system is completely accurate.

3.2 Task Computation and Transmission Model

We assume M CVs and N ESs in the network. In each time
slot t , each CV randomly generates a task, denoted as

()iD t (in kbit). Tasks can be computed in three ways:
locally, nearby ES computation, or distant ES computation.
1) Local Computation

In the local computation mode, tasks are executed locally
on the CVs. The available CPU frequency of ic is denoted
as if , and the number of CPU cycles required to execute
one task is denoted as ζ. Thus, the computation delay of
executing task  iD t locally can be written as:

 
 

cmp
i

i

iD t
T

f t

 
 (3)

2) Nearby ES Computation
In the nearby computation mode, tasks are offloaded from

the CV to the ES at the access layer via wireless
communication. Thus, the computation delay of executing
task  iD t through nearby ES computation can be written
as:

 
 

cmp
i

j

iD t
T

f t

 
 (4)

The transmission data rate of wireless communication is
determined by available spectrum, interference, and total
bandwidth. This paper adopts Orthogonal Frequency

Division Multiple Access (OFDMA) [20] as the access
mode for CVs. OFDMA divides the system bandwidth into
multiple parallel orthogonal sub-channels. Due to the
orthogonality between sub-carriers, there is no mutual
interference between them. Therefore, OFDMA can achieve
interference-free and parallel data transmission between
multiple devices. The transmission data rate between ic
and the nearby ES js can be expressed as:

2

() () ()
() ()log 1 i ij ij

ij ij
p t h t d t

r t b t




 
  

 
 (5)

where  ijb t is the bandwidth allocated to ic by js ,  ip t
is the transmission power of ic , and  ijh t is the current
channel gain between ic and js at time slot t . ()ijd t 

 is
calculated based on the positions of ic and js :

   () || ||ij i jd t l t l t    (6)

where  is the path loss exponent between the CV and the
ES, 2 is the background noise power.

The wireless transmission delay can be expressed as:

 
 

com
ij

ij

iD t
T

r t
 (7)

The task processing delay includes both the wireless
transmission delay of the task and the computation delay of
the ES, and can be expressed as:

 cmp com
i ijjT T T  (8)

3)Remote ES Computation
When the tasks to be executed exceed the maximum

computational capacity of nearby ESs under the required
latency constraints, the tasks need to be offloaded to distant
ESs for collaborative computing. If a task needs to be
offloaded from the access layer to the task transfer layer for
computation, it is defined as Remote ES Computation. The
task is first offloaded via wireless communication to the ES

js in the access layer, which then transfers it via wired
communication to the target ES 'js for computation.

The wired transmission delay of  iD t can be

expressed as:

 
 '

com
jj

j j

iD t
T

r t
 (9)

The wired transmission rate between js and 'js is
represented as:

 j j
j j

r t
d





 (10)

where  is the distance factor.
The total task processing delay includes the wireless

transmission delay of the task, the wired transmission delay,
and the computation delay of 'js , and can be expressed as:

 cmp com com
i ij jjjT T T T    (11)

IEICE TRANS. ELEC

3.2 Energy Consumption Model

Energy consumption consists of task computation energy
consumption and task transmission energy consumption.
The energy consumption for executing task  iD t locally is
given by:

     2
 i

cmp
i iiE t D t f  (12)

where i is the effective capacitance constant of the CPU

chip. Similarly, if computation is performed on an ES, the

energy consumption for  iD t is:

    2
 i

cmp
j jjE t D t f  (13)

During the task transmission phase, energy consumption
mainly occurs during uplink task transmission and downlink
computation result transmission. Since the size of
computation results is much smaller than that of
computation tasks, we only consider the energy
consumption of uplink task transmission. The energy
consumption for ic to transmit tasks to js via wireless
communication can be written as:

   
 

com

i

i i
ij

j

D t p t
E

r t
 (14)

where  ip t is the transmission power of ic . During local
computation, when tasks are computed locally without
considering transmission energy consumption, the energy
consumption for ic to process tasks is:

    cmp
i iE t E t (15)

For nearby ES computation, when tasks are executed

within the wireless transmission range of ESs, the total
energy consumption equals the sum of wireless transmission
energy consumption and the energy consumption of the ES
for computing tasks:

      com cmp
i ij jE t E t E t  (16)

For remote ES computation, when tasks are executed
outside the wireless transmission range of ESs, the energy
consumption equals the sum of uplink wireless transmission
energy consumption from the CV to the nearest base station,
the wired transmission energy consumption from the base
station to the target ES, and the energy consumption of the
target ES for computing tasks. Here, since the wired
transmission energy consumption from the base station to
the target ES is negligible, the total energy consumption for
task offloading is:

      com
'

cmp
i ij jE t E t E t  (17)

4. Problem Formulation in the Model

In this section, we propose a new task offloading problem
in the cloud-edge-vehicle system, aiming to improve energy
efficiency and latency performance in task execution by
optimizing task offloading strategies. We assume the system
has M CVs and N ESs, the fundamental problem in the
cloud-edge-vehicle system is to allocate offloading targets
and resources for each task.

As mentioned earlier, tasks can be computed locally, on
nearby ES, or on remote ESs. Introducing a weighting factor

iw constructs the objective function, adjusting the weights
of energy consumption and latency according to the task
preferences of CV. The total cost over a procedure cycle
consists of execution time cost and energy cost, represented

Fig. 2 DT-MADDPG learning framework.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
6

as follows:

 
1 1

(1)
T N

i i i i

t i

wT w E
 

  ψ (18)

where t is the current time slot in the iterative calculation
process, The task offloading problem can be formulated as
follows:

min
x,p,f,b

ψ (19)

 1: 0,1,2,..., , , ,iC x j N i   
 2 : ,max
ij j

i

C b B j


  




 3: ,max
ij j

i

C f F j


  




 4:0 ,i maxC p p i   

Constraint 1 represents the association policy between
tasks from CV and target devices, where 0ijx  denotes
local computation and ijx j denotes computation on js .
Constraints 2 and 3 ensure that the allocated computing
resources for CVs do not exceed the maximum bandwidth
and CPU frequency of ESs. Constraint 4 ensures that the CV
transmission power is less than the maximum transmission
power and non-negative.

This problem is a combinatorial problem with highly
complex coupled variables. Due to the challenges of task
offloading in the cloud-edge-vehicle system, solving the
task offloading problem through existing optimization
algorithms is highly challenging and cannot effectively
handle dynamic system conditions. We propose the use of
MADRL to find the optimal solution to the problem.

5. DT-MADDPG Task Offloading Algorithm

5.1 DT Empowered Multiagent Network Model

Since task offloading is a sequential decision-making
process, we model the task offloading problem as a Markov
Decision Process (MDP). Therefore, the task offloading
problem can be solved using DRL based methods.

In the cloud-edge-vehicle system model, each CV is
treated as a DRL agent. These agents are responsible for
issuing task requests and selecting task offloading strategies
based on task requirements and system environment. In each
time slot, the agents sequentially observe the state
environment according to ID order. To ensure that the agents
make optimal selections and maintain the coupling
relationship of ESs resources, combined with the
aforementioned DT, the observation of the agents is defined
as the current local environmental state and the global DT
information.

Agent i takes action ia in its local environment, and all
agents take joint actions         1 2, , , ma t a t a t a t  .

The immediate reward for the agents is obtained based on
the joint action   a t . The system state  s t evolves to the
next state (1)s t  under the action  a t with transition
probability (| ,)P s s a . Then, agent i observes the new state
from its current local environmental state and the DT. The
state space, action space, and reward function of the
established MDP model are as follows:
• State Space: The state of cloud-edge-vehicle system

consists of the task size  iD t , the distance between
agent and server         i 1 2d , , ,i i iNt d t d t d t  , the
channel gain of the link between agent and server

        1 2, , ,i i iNt h t h t h t ih , the available
computing capabilities of all servers
        1 2, , , Nt f t f t f t  f ,and the available

bandwidth of all servers         1 2, , , Nt b t b t b t  b .
In this context,  t f and  t b are obtained from the
DT. The local state observed by agent i at time slot t
is represented as follows:

             , , , ,it D t t t t ti i is d h f b (20)

 The system state at time slot t is represented as follows:
 () { (), (), , ()}t t t t 1 2 Ms s ss (21)

• Action Space: At time slot t, each agent i executes its
action based on its observation ()is t and its action
policy ()ia t . The action determines the task offloading
strategy ()ix t , determining the target devices for task
computation, transmission power ()ip t , the allocation
of CPU frequency ()if t , and channel allocation strategy

()ib t . The action set can be formulated as follows:
           i , , ,i i i it x t p t f t b ta  (22)

• Reward Function: Since we consider a coordinated
learning scheme for agents, the reward function aims to
improve the overall system performance. The reward
function for the agents is defined as follows:

  )((1)i i i i it wT w E    (23)

During the multi-agent collaboration process, the overall
reward function is designed based on global optimization
objectives, defined as follows:

    
1

M

i i

i

R t t


  (24)

where i represents the weighting factor in the
cumulative term.

5.2 DT-MADDPG learning framework

We employ a MADRL model for task offloading decisions
in computational capability networks. We propose a DT-
MADDPG learning framework, as shown in Fig. 2. In the
proposed framework, each agent interacts with its local
environment to obtain state observations and takes actions
for task offloading and resource allocation. During this
process, agents need to exchange their local information to
obtain global state and action observations for training Actor

IEICE TRANS. ELEC

and Critic networks. However, this exchange significantly
increases transmission overhead and latency performance.
To deal with these issues, we propose using DT to update
and acquire the global state of agents. DT perfectly reflect
the global system state at each moment, reducing the
interaction cost among agents during the training process.

In each time step loop, based on the observed local state
()is t , agent i takes action ()ia t , and the DT updates

synchronously according to ()ia t .According to agent’s ID,
the next agent i  in sequence, generates actions ()ia t
based on the updated local system state ()is t . After M
iterations, based on the actions       1 2, ,) ,(mt a t a t a ta t   ，

the system state estimates rewards ()Rt and get next state

 1s t  .
In this framework, our output actions are divided into two

categories: discrete actions and continuous actions.
Innovatively, in the actor network, we handle the two types
of actions output by the neural network separately:
1) Continuous-to-discrete action processing: The neural

network's output actions represent task transition
decisions, determining the target computation node for
executing these tasks, where) 0(ix t  indicates local
execution and ()ix t j indicates transmission to the
j-th ES for execution, including 1+n discrete variables.
After the neural network output is processed by the
tanh activation function, the data is transformed into a
continuous function   1, 1x  . Continuous actions
are then projected onto the interval (0, n) through a
linear transformation (LT) and subsequently rounded
down (floor), resulting in {0, 1, ..., n} discrete actions.
The specific process is illustrated in the Fig. 3.

2) Continuous Action Normalization: To ensure the
coupling relationships between the output actions of
different agents, a tanh activation layer is added to the
output actions of all continuous variables, including
upline power, bandwidth, and CPU frequency. This is
followed by linear transformation (LT) to constrain the
action variables between 0 and 1. Let

      , ,i i i ia p t f t b t represent the actor network's
output action, bounded between 0 and 1,

      , ,max max max maxa p t f t b t represent the maximum

attainable value, and ia represent the actual value.
Then, the reward calculation can be recovered from the
following equation:

  *i i maxa a a (25)

Because at the same time step t , if agent i offloads to
server j, after the agent i executes the action, the
remaining transmission bandwidth and computation
resources on server j will change accordingly, allowing
the maximum transmission bandwidth max ()b t and
maximum computation resources max ()f t to be
offloaded by the next agent i . The DT synchronizes
the state, updating to 's . Then, after the next agent i
receives observation from the DT, it can recover from
the following equation:

  '
' ' *i i maxa a a (26)

where


'ia represent the actual value of next agent i ,
'ia represent the actor network's output action of next

agent i ,

'
maxa represent the maximum attainable value

of next agent i .

 We adopt a MADRL approach based on DT-MADDPG
to find the optimal solution to the constructed problem. Each
CV is modeled as a DDPG agent, which consists of an actor
network and a critic network, both of which are deep neural
networks. The neural network adopts a Multi-Layer
Perceptron structure, consisting of three fully connected

Algorithm 1 DT-MADDPG Learning Algorithm

 1 Initialize critic network with weights Q
i and actor

network with weights i
 ; Initialize replay pool.

2 for episode = 1 to N do

3 Initialize the local network environment to state;
4 for each time slot t = 1, 2,... do

5 for each agent i= 1, 2,...,m do

6 Observe current system state ts from DT;
7 Select and take action i a towards ts , which

is generated by actor network;

8 Obtain reward ir according to Eq.22
9 Update the new state to the DT;
10 Get a new state observation 1ts  ;
11 Store  1, , ,i i i is a r s  to replay pool;
12 end for
13 for each agent i= 1, 2,...,m do

14 Take a batch of samples from the replay
pool; 15 Update the Critic network Q

i ；

16 Update the Actor network i
 ;

17 Update Actor target network '
i
 and Critic

target network 'Q
i ;

18 end for

19 end for

20 end for

Fig.3. Continuous-to-discrete action processing

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
8

layers, with each hidden layer having a dimension of 64. The
input layer first receives input data and undergoes batch
normalization for normalization. Following are two hidden
layers, each utilizing Rectified Linear Units as the activation
function to introduce non-linearity. Finally, the output layer
produces network output, processed through the hyperbolic
tangent function (tanh) to accommodate both discrete and
continuous action spaces. Specifically, the Actor network
takes the local state observed by agent i as input and outputs
its selected action. On the other hand, the Critic network
takes the global state and actions as input and outputs an
estimate of the current state. For agent i, the parameters of
its Actor and Critic networks are denoted as i

 and Q
i .

During the training process, the parameters of the Actor
network are updated using policy gradient methods, denoted
as:

   1 2log , , , , , ,
i

m
t t mi i s a Q s a a a w

 
        (27)

where  is the learning rate of the actor network, and
 1 2, , , , ,mQ s a a a w is the action-value function.

Similarly, the update for the Critic network is as follows:

   1 2log , , , , ,Qi
i

Q Q m
Q t t mi i s a Q s a a a       (28)

 In MADRL, the system state         1 2, , , ms t s t s t s t  is
the shared global state among all agents, and the joint action

        1 2, , , ma t a t a t a t  consists of actions from each
agent. The reward         1 2, , , mr t r t r t r t  for each agent
is calculated accordingly. The actor and critic networks are
updated by sampling a small batch of data from the replay
memory at each time slot.

On the other hand, the parameters of the target networks
are slowly updated by the main network every cycle. The
parameters of the Actor target and Critic target networks,

'
i
 and

'Q
i , respectively, are updated as follows:

 
 

' '

' '

1

1
i i

Q Q Q
i i

     
   

  
  

 (29)

where  is the temperature factor, which is utilized to
regulate the degree of softness or hardness in this update. A
larger value of  leads to a greater extent of parameter
synchronization."

The overall processes of the DT-MADDPG learning
algorithm for task transfer are shown in Algorithm 1.

6. Numerical Results

In this section, the effectiveness of the DT-MADDPG task
transfer algorithm is evaluated. To closely mimic real-world
conditions, we carefully selected parameters based on
existing studies and practical considerations. The experi-
mental scene is defined within a 1000m by 1000m
coordinate range, where the positions of the CVs are
randomly selected. The number of servers is set to 3, the

number of vehicles is varied at {10, 20, 40, 60}, and vehicle
speeds are set to {5, 10, 15, 20, 30} m/s. The task size per
time slot of CVs is set to {20, 50, 100, 150, 200} kbit [24].

For communication channel characteristics, we referred
to [25], which reflects common signal propagation
conditions. Specifically, the transmission bandwidth is set to
20 MHz, the maximum transmission power is set to 0.2 W,
the noise power is set to -113 dBm, and the wireless
communication radius of ES is set to 500 meters. For
computational resources, referring to literature [7], we set
the CPU frequency of CVs to 2 GHz and the CPU frequency
of ESs to [5, 25] GHz. The network bandwidth is set to 20
MHz, and the transmission power is set to 0.2 W.

The transmission channel bandwidth is set to 20MHz, and
the maximum transmission power of CV is set to 0.2W. The
noise power is set to -113 dBm/Hz. The number of CVs in the
simulation is set to 10, 20, 40, and 60, respectively. In the
MADRL algorithm, the number of training iterations is set to
50, the discount factor γ is set to 0.7, and the learning rate is set
to 0.001. Detailed parameter settings are shown in Table 1.

Table 1 Simulation Parameters

Fig.4. Convergence of different learning rates

To analyze the training efficiency differences of the DT-
MADDPG algorithm under different training parameter
settings, we selected learning rates of 0.001, 0.005, and 0.01
for comparison in Figure 4, observing their impact on
algorithm performance. As shown in Figure 4, the reward
curves exhibit an overall upward trend, demonstrating the
effectiveness of the algorithm. Additionally, lower learning
rates lead to faster convergence of the CV's reward value.
Specifically, we observed that when the learning rate was

 Meaning value
M Number of CVs {10，20，40，60}
N Number of ESs 3

uiD Task size per time slot of CVs {20,50,100,150,200}kbit

R

Wireless communication radius 500m

 White noise power -113dBm

if CPU frequency of CVs 2GHz

jf CPU frequency of ESs {5,10,15,20,25}GHz
 Computation complexity of the

task
500cycle/bit

ijB bandwidth 20MHz
max

ijP transmission power 0.2W

uiV velocity of CVs {5,10,15,20,30}m/s

IEICE TRANS. ELEC

0.001, the algorithm converged at the 8th iteration and
achieved the highest final convergence reward of 0.9501
within the same training epochs. This indicates that smaller
learning rates facilitate the algorithm to converge more
stably to higher reward levels during training. When the
learning rate increased to 0.005, the convergence speed
slowed down, with the algorithm converging at the 10th
iteration, and the final convergence reward slightly
decreased to 0.9447. Further increasing the learning rate to
0.01 resulted in the reward initially decreasing and then
increasing, converging around the 18th iteration, with a final
convergence reward of 0.8893. This suggests that larger
learning rates introduce greater instability during the update
process, making the algorithm more susceptible to the
influence of local extreme values and challenging to achieve
higher final convergence rewards. These results indicate that
lower learning rates enable the DT-MADDPG algorithm to
converge stably while reaching relatively optimal
convergence levels.

To demonstrate the superiority of the proposed algorithm, we
also compare its performance with four benchmark strategy:

1) All MEC Computing Strategy (AMCS): In this strategy,
all tasks are offloaded to the MEC server for execution. To
ensure experimental fairness, agents also utilize information
collected and shared by the DT. The choice of AMCS as a
benchmark strategy aims to evaluate the performance of
offloading all tasks to the ES, providing insight into the system's
performance under ideal conditions and serving as a reference
for comparing other strategies.

2) Random Offloading Computing Strategy (ROCS): In this
strategy, tasks are randomly executed either at the MEC server
or locally at the CV. ROCS is chosen to evaluate the system's
performance under conditions of randomness, providing a
baseline to measure the effectiveness of other optimization
strategies.

3) All Local Computing Strategy (ALCS): In this strategy, all
tasks are computed locally on the CV without any offloading.
The offloading cost consists of the local computing delay and
the energy consumption incurred by the CPU. This strategy
reflects the extreme case of relying entirely on local computa-
tion. By comparing with other offloading strategies, ALCS
provides a reference to evaluate the advantages of task
offloading in terms of performance.

4)DDPG[22]: DDPG is a widely used deep reinforcement
learning algorithm, suitable for solving task offloading and
resource allocation problems in edge computing environments.
Selecting DDPG as a benchmark aligns with common practices
in the literature[26]. To ensure fairness in information access,
we test the DDPG algorithm within our designed cloud-edge-
vehicle system framework, with the DT collecting and sharing
ES resource information with the agent. The agent updates its
actor and critic networks based on observations (including DT
information and CVs’ states) and actions to maximize its
expected return. By comparing the performance of the DT-
MADDPG algorithm, we highlight the advantages of multi-

agent learning in task offloading and resource allocation,
demonstrating the potential application value of multi-agent
systems in complex edge computing environments.

Fig.5. Reward vs. episodes

In the model training process depicted in Figure 5, we
evaluated the convergence of the proposed task offloading-
based strategy on DT-MADDPG. The simulation settings
included 50 training episodes, each comprising 100 steps. In
Figure 5, the x-axis represents the number of training
iterations, while the y-axis represents the cumulative reward
during the training process, i.e., the total cost incurred by
each agent in terms of system delay and energy
consumption. It can be observed that when the training set
is less than 10, the agents fail to effectively respond to the
environment. The agents accumulate training data over the
initial 10 episodes and then continuously learn and improve
their neural networks, thereby enhancing the model's
accuracy. After 10 iterations, the cumulative reward begins
to stabilize. Consequently, the training of the DT-MADDPG
model gradually converges, indicating that the model has
completed training and demonstrating its effectiveness.
After convergence, the average system rewards obtained by
DT-MADDPG, AMCS, DDPG, ROCS, and ALCS decrease
sequentially. Additionally, ALCS exhibits more stable
rewards post-training, attributed to minimal influence from
CV mobility during local computations, resulting in smaller
state changes and stable rewards post-convergence. The
convergence behavior of the DDPG algorithm,
characterized by initial reward reduction followed by
subsequent increase, may be attributed to the exploratory
nature of agents in the early stages of training. Agents
typically engage in more exploration, attempting various
actions to understand the environment. This may lead to
greater reward volatility as agents have yet to discover the
optimal strategy. As training progresses, agents gradually
shift towards exploiting learned knowledge.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
10

Fig.6. Reward vs. Task Size

In Figure 6, we compare the impact of different input data
sizes of tasks on the average system reward of the agents. As
shown, the average system reward of all offloading
strategies decreases with increasing task input data size. This
is because larger task input data sizes lead to greater
computation latency, transmission latency, and energy
consumption. From the comparison in this figure, it is
evident that the average system reward of the task offloading
strategy based on DT-MADDPG outperforms other
offloading strategies. When the task input data size is small,
the agents can execute tasks locally, which is less costly than
offloading tasks to ESs. However, when the task input data
size is large, most tasks are offloaded to ESs for execution,
as the abundant computing resources of ESs can handle
these computationally intensive tasks. As the task input data
size increases from 100 kbit to 150 kbit, the average system
reward of the proposed DT-MADDPG strategy increases by
3.72%, while the average system costs of the AMCS, ROCS,
DDPG and ALCS strategies increase by at least 9.48%,
19.14%, 20.26% and 23.60%, respectively. This indicates
that the average system rewards of all offloading strategies
increase as the network load increases, while the average
system costs of DT-MADDPG remain at a lower level.

Fig 7. Reward vs. CV velocity

In Figure 7, we compare the impact of different mobility
velocity of CV on the average system reward. As depicted,
the average system reward of all offloading strategies
decreases with increasing task input data size. When the
mobility speed is slow, such as 5 m/s and 10 m/s, the average

system rewards of various offloading strategies exhibit
relatively stable performance. However, as the mobility
speed increases to 15, 20, and 30 m/s, significant differences
in average system rewards. Specifically, with increasing
mobility speed, the average system reward of the DT-
MADDPG strategy remains relatively stable at a higher
level, indicating its effectiveness in improving the average
system reward under different mobility velocity. In contrast,
the performance of the AMCS, ROCS and DDPG strategies
deteriorates significantly at higher mobility velocity, with a
noticeable decrease in average system reward. This may be
attributed to these strategies' inability to effectively
coordinate task allocation and execution in high-speed
mobility environments, resulting in performance
degradation. The ALCS strategy, which executes tasks
locally and is unaffected by mobility, maintains a stable
average system reward regardless of speed changes. As
shown in the figure, when the CV speed is between 20 and
25 m/s, the reward obtained by ALCS will be greater than
the other four strategies. Therefore, it can be concluded that
our strategy is more suitable for use when the CV speed is
below 20 m/s.

(a)E-cost and T-cost (b) Reward

Fig.8. The impact of varying ES’s frequency on (a) E-cost and T-cost, (b)
Reward

In Figure 8(a), the blue bars represent the average energy
consumption of the agents, denoted as E-cost, while the pink
bars denote the average time delay of the agents, denoted as
T-cost. In Figure 8(b), the curve illustrates the variation of
rewards of the DT-MADDPG with changes in the maximum
CPU frequency of the ESs, while keeping other conditions
constant. With the increase in the computing capability of
ES, the latency of task offloading significantly decreases,
while energy consumption slightly increases. This is
because the enhanced computing capability of ES
accelerates the computation speed of tasks offloaded to the
ESs. However, computational energy consumption is
directly proportional to the computation frequency. As the
computation frequency increases, the energy consumption
also increases proportionally. Rewards are obtained by
weighting energy consumption and latency. From the
aforementioned figures, it can be observed that as the
maximum computation frequency of ESs increases, the
reward also increases. Therefore, this proves that the
algorithm is adaptable to changes in CPU frequency.

IEICE TRANS. ELEC

(a)E-cost and T-cost (b) Reward

Fig.9. The impact of varying CV numbers on (a) E-cost and T-cost, (b)
Reward

In Figures 9, comparing the average system costs of the
four offloading strategies for different numbers of CVs, it's
evident that with an increase in CVs quantity, the average
system rewards for each offloading strategy decrease. As the
number of CVs increase, the system's average reward
decline, while both latency and energy consumption
noticeably increase. This is because when a large number of
tasks are offloaded to the same ES, the allocated
computational resources for each CV decrease, leading to
increased computational time delays and energy
consumption. Consequently, the system's average rewards
relatively decrease. Therefore, this proves that the algorithm
is adaptable to changes in CVs numbers.

7. Conclusion

In this study, we investigated the joint optimization problem
of task offloading and resource allocation in future 6G
networks. To solve this problem, we built the cloud-edge-
vehicle system model and proposed a task offloading
strategy based on DT-empowered DRL. This algorithm
minimized the total system cost in terms of system latency
and energy consumption. Through simulation experiments,
we tested that the proposed strategy achieved better reward
performance under different sizes of task input data, CVs’
mobility velocity, ES computing capacities, and CVs’
quantities. Additionally, the algorithm showed good
adaptability in handling latency and energy consumption
issues for varying ES computing capacities and CVs’
quantities.

In future research, we will consider strategies of task
partitioning, and allow tasks from an intelligent agent at a
certain moment to be distributed across different ESs for
computation to improve computational speed. Furthermore,
we will investigate accurate energy consumption by DT’s
synchronization information for better performance.
Moreover, since the assumption that DT information is
completely accurate may not hold true in the actual scene,
future work should explore the performance of the proposed
method under different accuracy levels of DT information to
better reflect the real world situation.

Acknowledgments

This work was supported by Science and Technology
development program for Innovation-driven Development
Pilot Zone of Silk Road Economic Belt and Wuchangshi
National Independent Innovation Demonstration Zone
under Grant 2023LQ02004.

References

[1] M Noor-A-Rahim, Z Liu, H Lee, MO Khyam, J He, D Pesch, K
Moessner, W Saad and HV Poor. "6G for Vehicle-to-Everything (V2X)
Communications: Enabling Technologies, Challenges, and
Opportunities," in Proceedings of the IEEE, vol. 110, no. 6, pp. 712-
734, June 2022.

[2] S. B. Prathiba, G. Raja, S. Anbalagan, K. Dev, S. Gurumoorthy and A.
P. Sankaran, "Federated Learning Empowered Computation
Offloading and Resource Management in 6G-V2X," in IEEE
Transactions on Network Science and Engineering, vol. 9, no. 5, pp.
3234-3243, 1 Sept.-Oct. 2022

[3] X. Zhu, F. Ma, F. Ding, Z. Guo, J. Yang and K. Yu, "A Low-Latency
Edge Computation Offloading Scheme for Trust Evaluation in
Finance-Level Artificial Intelligence of Things," in IEEE Internet of
Things Journal, vol. 11, no. 1, pp. 114-124, 1 Jan.1, 2024.

[4] J. Lin, S. Huang, H. Zhang, X. Yang and P. Zhao, "A Deep-
Reinforcement-Learning-Based Computation Offloading With Mobile
Vehicles in Vehicular Edge Computing," in IEEE Internet of Things
Journal, vol. 10, no. 17, pp. 15501-15514, 1 Sept.1, 2023.

[5] J. Du, Z. Kong, A. Sun, J. Kang, D. Niyato, X. Chu, FR. Yu.
"MADDPG-Based Joint Service Placement and Task Offloading in
MEC Empowered Air–Ground Integrated Networks," in IEEE Internet
of Things Journal, vol. 11, no. 6, pp. 10600-10615, 15 March15, 2024.

[6] Q. Li, Y. Cui, T. Song and L. Zheng, "Federated Multiagent Actor–
Critic Learning Task Offloading in Intelligent Logistics," in IEEE
Internet of Things Journal, vol. 10, no. 13, pp. 11696-11707, 1 July1,
2023.

[7] Y. Lu, B. Ai, Z. Zhong and Y. Zhang, "Energy-Efficient Task Transfer
in Wireless Computing Power Networks," in IEEE Internet of Things
Journal, vol. 10, no. 11, pp. 9353-9365, 1 June1, 2023.

[8] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data sharing in
Internet of Vehicles” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp.
4298–4311, Apr. 2020.

[9] Y. Dai and Y. Zhang, "Adaptive DT for Vehicular Edge Computing
and Networks," in Journal of Communications and Information
Networks, vol. 7, no. 1, pp. 48-59, March 2022.

[10] T. H.-J. Uhlemann, C. Lehmann, and R. Steinhilper, “The DT:
Realizing the cyber-physical production system for industry 4.0,”
Procedia Cirp, vol. 61, pp. 335–340, Dec. 2017.

[11] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in DT
empowered 6G networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp. 5098–5107, Jul. 2021.

[12] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6G,”
IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, 1st Quart., 2022.

[13] Y. Zhao, L. Li, Y. Liu, Y. Fan, K. Lin. "Communication-efficient
federated learning for DT systems of industrial Internet of
Things." IFAC-PapersOnLine. Vol.55, no. 2, pp. 433-438, Apr.2022.

[14] X. Lin, J. Wu, J. Li, W. Yang and M. Guizani, "Stochastic Digital-Twin
Service Demand With Edge Response: An Incentive-Based Congestion
Control Approach," in IEEE Transactions on Mobile Computing, vol.
22, no. 4, pp. 2402-2416, Apr.2023.

[15] L. Tang, Y. Du, Q. Liu, J. Li, S. Li and Q. Chen, "Digital-Twin-
Assisted Resource Allocation for Network Slicing in Industry 4.0 and
Beyond Using Distributed Deep Reinforcement Learning," in IEEE
Internet of Things Journal, vol. 10, no. 19, pp. 16989-17006, 1 Oct.1,
2023

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
12

[16] W. Sun, N. Xu, L. Wang, H. Zhang, and Y. Zhang, “Dynamic DT and
federated learning with incentives for air-ground networks,” IEEE
Trans. Netw. Sci. Eng., vol. 9, no. 1, pp. 321–333, Jan./Feb. 2022.

[17] F. Zhang, G. Han, L. Liu, Y. Zhang, Y. Peng and C. Li, "Cooperative
Partial Task Offloading and Resource Allocation for IIoT Based on
Decentralized Multiagent Deep Reinforcement Learning," in IEEE
Internet of Things Journal, vol. 11, no. 3, pp. 5526-5544, 1 Feb.1, 2024

[18] L. Liu and Z. Chen, "Joint Optimization of Multiuser Computation
Offloading and Wireless-Caching Resource Allocation With Linearly
Related Requests in Vehicular Edge Computing System," in IEEE
Internet of Things Journal, vol. 11, no. 1, pp. 1534-1547, 1 Jan.1, 2024.

[19] S. Zhao, Y. Liu, S. Gong, B. Gu, R. Fan and B. Lyu, "Computation
Offloading and Beamforming Optimization for Energy Minimization
in Wireless-Powered IRS-Assisted MEC," in IEEE Internet of Things
Journal, vol. 10, no. 22, pp. 19466-19478, 15 Nov.15, 2023.

[20] N. Lin, H. Tang, L. Zhao, S. Wan, A. Hawbani and M. Guizani, "A
PDDQNLP Algorithm for Energy Efficient Computation Offloading in
UAV-Assisted MEC," in IEEE Transactions on Wireless
Communications, vol. 22, no. 12, pp. 8876-8890, Dec. 2023

[21] S. Wan, J. Lu, P. Fan, Y. Shao, C. Peng, and K. B. Letaief,
“Convergence analysis and system design for federated learning over
wireless networks,” IEEE J. Sel. Areas Commun., vol. 39, no. 12, pp.
3622–3639, Dec. 2021.

[22] J. Ren and S. Xu, "DDPG Based Computation Offloading and
Resource Allocation for MEC Systems with Energy Harvesting," 2021
IEEE 93rd Vehicular Technology Conference (VTC2021-Spring),
Helsinki, Finland, pp. 1-5, Apr.2021

[23] A.Dogra, R.K.Jha, and S.Jain. "A survey on beyond 5G network with
the advent of 6G: Architecture and emerging technologies." IEEE
access 9, vol. 9, pp. 67512-67547, 2020

[24] S. R. Jeremiah, L. T. Yang, J. H. Park, "Digital twin-assisted resource
allocation framework based on edge collaboration for vehicular edge
computing," Future Generation Computer Systems, vol. 150, pp. 243-
254, Jan 2024.

[25] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[26] M.Khani, MM.Sadr, S.Jamali. "Deep reinforcement learning‐based

resource allocation in multi‐access edge computing." Concurrency and
Computation: Practice and Experience, vol. 36, no. 15, pp. e7995, Jul
10. 2024.

Jiakun LI received the Bachelor's degree in
Mechanical Engineering from Qingdao University
of Technology in 2022 and is currently pursuing a
Master's degree at Dalian University of
Technology. Her research interests include edge
computing and reinforcement learning.

Jiajian LI received the B.S. degree in mechanical
engineering from Dalian University of
Technology, Dalian, China, in 2020.
He continues to pursue the Ph.D degree in Dalian
University of Technology, Dalian, China. His
research interests include Internet of Vehicles,
intersection coordination, and intelligent traffic.

Yanjun SHI received the B.S. degree in
mechanical engineering from Dalian Ocean
University, China, in 1996, the M.S. degree in
mechatronic engineering from Beihang
University, China, in 1999, and the Ph.D. degree
in computer engineering from Dalian University
of Technology, China, in 2005.

He is currently an Professor with the School of
Mechanical Engineering, Dalian University of

Technology, Vice Chair of IEEE SMC Dalian Chapter. He is an Associate
Editor of the IET Collaborative Intelligent Manufacturing, and has
published over 80 papers in scientific journals and international conferences.
His research interests include collaborative planning and scheduling, multi-
access edge computing, 5G applications, autonomous vehicles.

Hui LIAN received the B.S. degree from Harbin
University of Science and Technology,
Heilongjiang, China, in 2005.
He currently works at TBEA Co., Ltd., serving as
the Deputy Director of the Cable Research
Institute.

Haifan WU received the B.S. degree in
mechanical engineering from Dalian University
of Technology, China, in 1990, the M.S. degree
in mechanical engineering from Dalian
University of Technology, in 1996, and the Ph.D.
degree in Control systems from Tokyo Institute of
Technology, Japan, in 2006.
He is currently an associate professor with the
school of Mechanical Engineering, Dalian
University of Technology. His research fields are

Rehabilitation Robot and Warehouse Automation.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

