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SUMMARY Building defect prediction models based on online learning 

can enhance prediction accuracy. It continuously rebuilds a new prediction 

model while adding new data points. However, a module predicted as “non-

defective” can result in fewer test cases for such modules. Thus, a defective 

module can be overlooked during testing. The erroneous test results are 

used as learning data by online learning, which could negatively affect 

prediction accuracy. To suppress the negative influence, we propose to 

apply a method that fixes the prediction as positive during the initial stage 

of online learning. Additionally, we improved the method to consider the 

probability of defect overlooking. In our experiment, we demonstrate this 

negative influence on prediction accuracy and the effectiveness of our 

approach. The results show that our approach did not negatively affect AUC 

but significantly improved recall. 
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1. Introduction 

Software testing is one of the key activities in finding defects. 

However, due to scarce resource availability and software 

development duration, testing can be limited to a few 

modules [9]. Defect prediction is one of the major 

approaches to suppressing remaining defects. When a 

module is regarded as defective by the prediction model, it 

is tested thoroughly (i.e., more effort is spent on testing it). 

In contrast, a module regarded as non-defective is tested 

much more lightly [5]. When the accuracy of the prediction 

model is high, both low testing costs and high software 

quality can be achieved. 

Training data based on the previous version’s history is 

often used to build a defect prediction model. For instance, 

during the development of version 1.0, data such as the 

number of found defects and the complexity of the modules 

are recorded. Next, a defect prediction model for the next 

version (e.g., 1.1) is built using this data. Lastly, during the 

development of version 1.1 (i.e., on test data), defects of 

each module are predicted using the prediction model built 

in the previous stage. The procedure is called cross-version 

defect prediction (CVDP). 

However, the accuracy of CVDP is often low. This is 

because when the version is different between learning and 

test data, effective independent variables of the prediction 

model are often different. This is regarded as an external 

validity issue of defect prediction [1]. Online learning 

approaches have been proposed [7] to address the problem. 

When a new data point is added, online learning adds it to 

the learning dataset and rebuilds a new prediction model. 

Using this approach, software testing results are collected 

and utilized to enhance prediction accuracy during 

development. 

Fig. 1 illustrates an example of defect prediction by 

online learning. Each module is tested sequentially from the 

top to the bottom. After module t9 is tested (i.e., before t5), 

a prediction model M1 is built. The learning dataset includes 

modules t1 and t9, where an independent variable is the lines 

of code (LOC), and a dependent variable is the test result. 

The test result of t5 is predicted by M1. After t5 is tested, 

model M2 is built based on t1, t9, and t5 data. The test result 

of t7 is predicted by M2. 
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Fig. 1 Example of defect prediction by online learning 
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However, the learning dataset is not always correct due 

to defects overlooking during software testing. To the best 

of our knowledge, past studies have not considered the 

influence of defect overlooking on the performance of defect 

prediction via online learning. The main contribution of the 

paper is that we assess and demonstrate the influence of 

defect overlooking in online learning and propose a new 

method to suppress the influence. 

2. Defect Overlooking 

Defect overlooking is pointed out in Tabassum et al. [8] 

(Note that the study did not use online learning), and study 

[8] identified two types of defects overlooking. The 

overlooking adds incorrect data points to learning dataset, as 

explained below. This section explains the two types of 

overlooking. 

Type 1 overlooking: When a defect prediction model 

predicts a negative result (i.e., “non-defective”), developers 

will typically write fewer test cases for those modules [5] to 

efficiently allocate testing resources [6][9]. As a result, the 

test could overlook defects, and the module might be 

regarded as “non-defective,” even if the module is defective. 

We call this case a Type 1 overlooking. This means defects 

are overlooked due to fewer test cases based on negative 

prediction. 

Type 1 overlooking could negatively affect the accuracy 

of prediction models produced by online learning. In Figure 

2, the column “test result” considers only defects during 

testing, while “actual result after testing” also considers 

defects after testing was done (e.g., when the software is 

released). In the example, we assume defects are overlooked 

when the prediction is negative due to fewer test cases on a 

certain probability n%. That is, when the “Prediction” 

column is “Negative” in Fig. 2, the “Test result” column is 

“Non-defective” with n% probability. The probability 

depends on how much testing resource is assigned (i.e., test 

cases are made) to negative prediction modules.  

Based on the test outcomes, module t1 is regarded as 

non-defective. However, based on the actual result, the 

learning data is incorrect and should be considered defective. 

As a result, the accuracy of model M2 becomes low, and the 

model predicts module t7 as “non-defective” erroneously. 

Note that the influence of Type 1 overlooking to 

prediction accuracy is not only affected by the probability n. 

For instance, when a model accurately predicts non-

defective modules as negative, Type 1 errors seldom occur 

even if n is high. Additionally, when most modules are 

predicted as positive, Type 1 errors seldom occur. 

Type 2 overlooking: Even when the prediction is 

positive (i.e., “defective”), and many test cases are applied, 

defects are sometimes overlooked during testing. We call 

this case as defect overlooking by positive prediction. This 

could occur even when testing resources are not allocated by 

defect prediction. Module t5 (Fig. 2) is an example of such 

a case. This is because we cannot find all defects perfectly 

by testing. Based on large-scale data from cross-companies 

[2], about 17% of defects are overlooked during integration 

testing. 

3. Handling Defect Overlooking 

Fixed prediction: To suppress the influence of Type 1 

overlooking, we propose to apply the fixed prediction 

method proposed in Tabassum et al. [8], which turns 

negative into positive prediction on m negative-predicted 

modules (i.e., during the early iteration of online learning). 

The value m is 10% of all test target modules. For instance, 

 

Fig. 2 Example of two types of defect overlooking 

 

Fig. 3 Example of fixed prediction method proposed in study [8] 

 

Fig. 4 Example of proposed method which quits fixed prediction. 
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Table 1. Statistical summary of datasets and accuracy of reference models 

Dataset Version Number of modules Defective modules (Percentage) AUC Precision Recall F1 score 

Ant 1.7 745 166 (22.3%) 0.74 46.3% 72.0% 56.3% 

Prop 6 660 66 (10.0%) 0.63 17.8% 55.2% 26.9% 

Synapse 1.2 256 86 (33.6%) 0.70 56.1% 65.8% 60.5% 
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when the number of test target modules is 100, m is set as 

10. As shown in the column “Fixed prediction” of Fig. 3, the 

fixed prediction of the t1 and t7 modules is set to “positive”. 

This restrains Type 1 overlooking and keeps test results (i.e., 

learning data) accurate with high probability. This is because 

when the prediction is “positive”, many more test cases are 

applied to the module. 

Note that the method uses the model's prediction when 

m negative-predicted modules have been tested. We could 

not avoid Type 2 overlooking (module t5 on the figure) by 

the method. The study [8] did not rebuild prediction models 

by online learning. Hence, the effect of the method on online 

learning is unclear. 

Fixed prediction considering the rate of Type 1 

overlooking: As explained in Section 2, the probability of 

Type 1 overlooking n depends on how much testing resource 

is assigned for negative prediction modules. When the 

probability is low, the fixed prediction method could 

degrade the accuracy of the prediction because the method 

increases false-positive prediction. 

To avoid the degradation, we propose a new method that 

quits the fixed prediction when the rate (i.e., probability) of 

Type 1 overlooking is low according to the following 

procedure: 

1. Do nothing until after 0.5m fixed-prediction modules 

have been tested. 

2. After each module is tested, count the number of fixed-

prediction modules for which the test results are 

defective. 

3. Calculate the probability rate, dividing the count of step 

2 by the number of tested fixed-prediction modules. 

4. When the probability rate (calculated on step 3) is 

smaller than 25%, proposed method quit the fixed 

prediction. 

5. Back to Step 2. 

For instance, assume that the number of test target 

modules is 100 and the value of 0.5m is 5 in Fig. 4. Five 

modules have been tested, and there is one module whose 

test result is defective. Therefore, the probability rate is 20%, 

and the proposed method quits fixed prediction. 

4. Experiment 

Settings: In the experiment, we changed the probability of 

Type 1 overlooking from 20% to 100% by changing the test 

results of the datasets (see Fig.2) artificially. Similarly, we 

set the probability of Type 2 overlooking as 20% based on 

[2]. Note that the lower bound of the probability of Type 1 

overlooking is lower than the probability of Type 2 because 

assigned testing resources to negative prediction modules is 

not larger than that of positive prediction. 

We evaluated the following prediction models: 

 Reference: Models where Type 1 and 2 overlooking 

never occurs. 

 Ordinary: Models without fixed prediction 

 Fixed prediction: Models with fixed prediction 

 Proposed method: Models with the new method 

When evaluating the models, we randomly sorted the 

order of modules 40 times and calculated the average of the 

evaluation criteria acquired from the 40 repetitions. This is 

because the influence of Type 1 overlooking on prediction 

accuracy affects the order. For instance, most modules are 

predicted as positive in the early iterations of online learning, 

and the influence gets smaller (see Section 3). Following 

Krishna et al. [4], we set the number of repetitions to 40. 

Table 2. Difference between reference and ordinary models 

Type 1 

overlooking 

Ant Prop Synapse 

AUC Precision Recall F1 score AUC Precision Recall F1 score AUC Precision Recall F1 score 

20% -0.01 0.3% -3.4% -0.9% 0.00 0.5% -2.6% 0.2% -0.02 -0.6% -4.3% -2.2% 

40% -0.01 0.9% -5.2% -1.1% -0.01 0.5% -6.1% -0.3% -0.03 -0.2% -9.2% -4.4% 

60% -0.02 4.9% -11.8% -1.3% -0.03 0.3% -12.5% -1.7% -0.05 -0.5% -15.8% -8.5% 

80% -0.05 7.5% -20.6% -4.0% -0.06 0.2% -23.9% -4.6% -0.08 1.0% -28.7% -16.5% 

100% -0.22 -32.3% -65.7% -19.5% -0.13 -13.3% -53.4% -12.7% -0.17 -29.6% -56.6% -33.4% 

Table 3. Difference between ordinary and fixed prediction models 

Type 1 

overlooking 

Ant Prop Synapse 

AUC Precision Recall F1 score AUC Precision Recall F1 score AUC Precision Recall F1 score 

20% -0.03 -8.0% 6.6% -4.5% -0.02 -3.3% 7.8% -3.1% -0.02 -6.8% 7.3% -1.3% 

40% -0.02 -8.4% 6.9% -4.4% -0.02 -3.3% 8.0% -2.8% -0.02 -7.6% 9.4% -0.4% 

60% -0.02 -12.0% 12.2% -4.2% 0.00 -3.0% 11.7% -1.6% 0.00 -6.9% 13.7% 3.0% 

80% 0.00 -13.6% 17.7% -1.5% 0.02 -3.1% 18.8% 0.6% 0.03 -8.2% 23.5% 9.9% 

100% 0.17 26.9% 59.5% 13.5% 0.08 10.3% 40.3% 7.5% 0.11 22.0% 48.1% 25.2% 

Table 4. Difference between ordinary and proposed models 

Type 1 

overlooking 

Ant Prop Synapse 

AUC Precision Recall F1 score AUC Precision Recall F1 score AUC Precision Recall F1 score 

20% -0.01 -4.3% 4.7% -1.9% -0.01 -2.0% 4.9% -1.8% -0.02 -5.9% 6.5% -1.0% 

40% -0.01 -5.2% 3.8% -2.6% 0.00 -1.4% 7.3% -0.7% -0.01 -5.7% 9.0% 0.7% 

60% 0.00 -6.9% 7.0% -1.8% 0.01 -1.5% 8.6% -0.2% 0.00 -6.3% 13.9% 3.5% 

80% 0.01 -8.5% 12.4% 0.5% 0.03 -1.4% 13.4% 1.8% 0.03 -8.2% 23.0% 9.7% 

100% 0.16 32.0% 50.1% 13.3% 0.07 11.3% 29.9% 6.4% 0.10 21.8% 44.1% 23.2% 
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We randomly selected three datasets (ant, prop, and 

synapse) published on PROMISE and D’Ambros et al. [1] 

repositories to perform our cross-version defect prediction. 

Each dataset includes 20 independent variables, including 

product metrics such as CK metrics. 

To predict defective modules, we used logistic 

regression, a widely used method in defect prediction [1][3]. 

As a feature selection method, we applied correlation-based 

feature selection, which is effective when used with logistic 

regression [3]. We used AUC, precision, recall, and F1 

scores to evaluate the performance of each prediction model. 

Result of ordinary models: Table 1 shows a statistical 

summary of datasets and the evaluation criteria of reference 

models. Table 2 shows the difference between reference and 

ordinary models. The negative values in Table 2 indicate 

that the accuracy of ordinary models degrades the reference. 

Except for the probability of Type 1 overlooking is 100%, 

the degradation of AUC, precision, and F1 score was 

moderate. However, the degradation of recall was over 10% 

when the probability rate was equal to or larger than 60%. 

That is, Type 1 overlooking mainly affects the recall of 

prediction models, which could cause residual defects and 

degradation of software quality.  

Result of fixed prediction models: Table 3 shows the 

difference between the ordinary and fixed prediction models. 

Positive values denote that the fixed prediction model 

improved in accuracy. Overall, the recall has also 

significantly improved. For the ant dataset, the AUC value 

had degraded when the percentage of Type 1 overlooking 

was equal to or less than 60%, and degradation of the 

precision was large (i.e., over 8%), regardless of the 

percentage. 

Result of proposed models: Table 4 shows the 

difference between ordinal and proposed models. Positive 

values on the table denote that the accuracy was improved 

by the proposed method. AUC did not degrade when the 

percentage of Type 1 overlooking was larger than 60%, and 

the extent of the degradation was minimal even when the 

percentage was 20%. Similarly, when the percentage was 

equal to or larger than 80%, the F1 score improved, and the 

degradation was negligible compared with Table 3. The 

degradation of precision was smaller than 9%. Compared 

with Tables 3 and 4, the proposed method suppressed 

negative influences of fixed prediction, even when the 

percentage of Type 1 overlooking was 20%. 

5. Conclusion 

This paper focused on software defect prediction models 

built using online learning. Although the approach is 

effective, it is affected by overlooking defects. When 

modules are predicted as “non-defective,” fewer test cases 

are allocated for those modules. Consequently, defects can 

be overlooked during software testing, even when the 

module is defective. This overlooking distorts the learning 

data utilized by online learning. 

To mitigate the influence of overlooking, we propose 

applying a fixed prediction method, which forcibly turns the 

prediction as “defective” during the initial stage of online 

learning. However, the method always turns prediction, 

even when the overlooking seldom occurs. This could 

degrade the precision of the defect prediction. To address the 

issue, we propose a new method that discontinues the fixed 

prediction method when the rate of occurrence of 

overlooking is low. 

We used three datasets in the experiment and artificially 

manipulated the probability of overlooking. The 

experimental results showed the following: 

 When defect prediction models were built using online 

learning without the fixed prediction method (i.e., the 

existing approach), the recall was degraded by over 

10% when the probability of overlooking was 60% or 

greater. 

 The recall improved significantly when the models 

were built using the fixed prediction method. However, 

precision was degraded by over 5% on two of three 

datasets, regardless of the probability of overlooking. 

 When the models were built using the proposed method, 

the AUC and F1 scores improved when the probability 

of overlooking was 80% or greater. Compared with the 

fixed prediction method, the degradation of AUC, 

precision, and F1 score was minor, but the recall 

improvement from the existing approach was steady. 

The result suggests that using the proposed method, even 

if testing resources are drastically reduced for modules that 

are predicted as defective, the accuracy and recall of the 

prediction models are not significantly affected. 
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