
DOI:10.1587/transinf.2024MPL0001

Publicized:2024/09/09

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

LETTER

Building Defect Prediction Models by Online Learning Considering

Defect Overlooking

 Nikolay FEDOROV†, Yuta YAMASAKI††, Nonmembers, Masateru TSUNODA††,

Akito MONDEN†, Members, Amjed TAHIR†††, Kwabena Ebo BENNIN††††, Nonmembers,

Koji TODA†††††, Member, and Keitaro NAKASAI††††††, Nonmember

SUMMARY Building defect prediction models based on online learning

can enhance prediction accuracy. It continuously rebuilds a new prediction

model while adding new data points. However, a module predicted as “non-

defective” can result in fewer test cases for such modules. Thus, a defective

module can be overlooked during testing. The erroneous test results are

used as learning data by online learning, which could negatively affect

prediction accuracy. To suppress the negative influence, we propose to

apply a method that fixes the prediction as positive during the initial stage

of online learning. Additionally, we improved the method to consider the

probability of defect overlooking. In our experiment, we demonstrate this

negative influence on prediction accuracy and the effectiveness of our

approach. The results show that our approach did not negatively affect AUC

but significantly improved recall.

keywords: Fault prediction, CVDP, overlooking, false negative, oversight

prevention

1. Introduction

Software testing is one of the key activities in finding defects.

However, due to scarce resource availability and software

development duration, testing can be limited to a few

modules [9]. Defect prediction is one of the major

approaches to suppressing remaining defects. When a

module is regarded as defective by the prediction model, it

is tested thoroughly (i.e., more effort is spent on testing it).

In contrast, a module regarded as non-defective is tested

much more lightly [5]. When the accuracy of the prediction

model is high, both low testing costs and high software

quality can be achieved.

Training data based on the previous version’s history is

often used to build a defect prediction model. For instance,

during the development of version 1.0, data such as the

number of found defects and the complexity of the modules

are recorded. Next, a defect prediction model for the next

version (e.g., 1.1) is built using this data. Lastly, during the

development of version 1.1 (i.e., on test data), defects of

each module are predicted using the prediction model built

in the previous stage. The procedure is called cross-version

defect prediction (CVDP).

However, the accuracy of CVDP is often low. This is

because when the version is different between learning and

test data, effective independent variables of the prediction

model are often different. This is regarded as an external

validity issue of defect prediction [1]. Online learning

approaches have been proposed [7] to address the problem.

When a new data point is added, online learning adds it to

the learning dataset and rebuilds a new prediction model.

Using this approach, software testing results are collected

and utilized to enhance prediction accuracy during

development.

Fig. 1 illustrates an example of defect prediction by

online learning. Each module is tested sequentially from the

top to the bottom. After module t9 is tested (i.e., before t5),

a prediction model M1 is built. The learning dataset includes

modules t1 and t9, where an independent variable is the lines

of code (LOC), and a dependent variable is the test result.

The test result of t5 is predicted by M1. After t5 is tested,

model M2 is built based on t1, t9, and t5 data. The test result

of t7 is predicted by M2.

 † The authors are from Okayama University, Japan.
 †† The authors are with Kindai University, Japan.
 ††† The author is with Massey University, New Zealand.
 †††† The author is with Wageningen University & Research,

the Netherlands.
 ††††† The author is with Fukuoka Institute of Technology,

Japan.
 †††††† The author is with Osaka Metropolitan University

College of Technology.

This work is an extended study of Y. Yamasaki and N. Fedorov et al., “Software

Defect Prediction by Online Learning Considering Defect Overlooking,” Proc. of

International Symposium on Software Reliability Engineering Workshops

(ISSREW), pp.43-44, 2023.

Fig. 1 Example of defect prediction by online learning

Test

module

Lines of

code
Test result Prediction

t1 250 Non-defective Negative

t9 537 Defective Positive

t5 336

t7 801

Test

module

Lines of

code
Test result Prediction

t1 250 Non-defective Negative

t9 537 Defective Positive

t5 336 Non-defective Positive

t7 801

Model M1

Model M2

After t9 is tested

After t5 is tested

Predict

Build

Build

Predict

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

However, the learning dataset is not always correct due

to defects overlooking during software testing. To the best

of our knowledge, past studies have not considered the

influence of defect overlooking on the performance of defect

prediction via online learning. The main contribution of the

paper is that we assess and demonstrate the influence of

defect overlooking in online learning and propose a new

method to suppress the influence.

2. Defect Overlooking

Defect overlooking is pointed out in Tabassum et al. [8]

(Note that the study did not use online learning), and study

[8] identified two types of defects overlooking. The

overlooking adds incorrect data points to learning dataset, as

explained below. This section explains the two types of

overlooking.

Type 1 overlooking: When a defect prediction model

predicts a negative result (i.e., “non-defective”), developers

will typically write fewer test cases for those modules [5] to

efficiently allocate testing resources [6][9]. As a result, the

test could overlook defects, and the module might be

regarded as “non-defective,” even if the module is defective.

We call this case a Type 1 overlooking. This means defects

are overlooked due to fewer test cases based on negative

prediction.

Type 1 overlooking could negatively affect the accuracy

of prediction models produced by online learning. In Figure

2, the column “test result” considers only defects during

testing, while “actual result after testing” also considers

defects after testing was done (e.g., when the software is

released). In the example, we assume defects are overlooked

when the prediction is negative due to fewer test cases on a

certain probability n%. That is, when the “Prediction”

column is “Negative” in Fig. 2, the “Test result” column is

“Non-defective” with n% probability. The probability

depends on how much testing resource is assigned (i.e., test

cases are made) to negative prediction modules.

Based on the test outcomes, module t1 is regarded as

non-defective. However, based on the actual result, the

learning data is incorrect and should be considered defective.

As a result, the accuracy of model M2 becomes low, and the

model predicts module t7 as “non-defective” erroneously.

Note that the influence of Type 1 overlooking to

prediction accuracy is not only affected by the probability n.

For instance, when a model accurately predicts non-

defective modules as negative, Type 1 errors seldom occur

even if n is high. Additionally, when most modules are

predicted as positive, Type 1 errors seldom occur.

Type 2 overlooking: Even when the prediction is

positive (i.e., “defective”), and many test cases are applied,

defects are sometimes overlooked during testing. We call

this case as defect overlooking by positive prediction. This

could occur even when testing resources are not allocated by

defect prediction. Module t5 (Fig. 2) is an example of such

a case. This is because we cannot find all defects perfectly

by testing. Based on large-scale data from cross-companies

[2], about 17% of defects are overlooked during integration

testing.

3. Handling Defect Overlooking

Fixed prediction: To suppress the influence of Type 1

overlooking, we propose to apply the fixed prediction

method proposed in Tabassum et al. [8], which turns

negative into positive prediction on m negative-predicted

modules (i.e., during the early iteration of online learning).

The value m is 10% of all test target modules. For instance,

Fig. 2 Example of two types of defect overlooking

Fig. 3 Example of fixed prediction method proposed in study [8]

Fig. 4 Example of proposed method which quits fixed prediction.

Test

module

Lines of

code
Test result

Prediction

by M1

Actual result

After testing

t1 250 Non-defective Negative Defective

t9 537 Defective Positive Defective

t5 336 Non-defective Positive Defective

t7 801 Non-defective Negative Defective

Model
M1

Build

Predict

Type 1: Occur n% probability Type 2: Occur about 20% probability

Learning data

Module
Test

result

Fixed

prediction
Prediction

Actual

result
Correctness

t1 Def. Positive Negative Defective Correct

t9 Def. - Positive Defective Correct

t5 Non-def. - Positive Defective Incorrect

t7 Def. Positive Negative Defective Correct

Test results (i.e., learning data)

turn correct.

When prediction is negative,

set positive for m modules

(m: 10% of all modules)

Module
Test

result

Fixed

prediction
Prediction

t44 Non-def. Positive Negative

t42 Non-def. Positive Negative

t45 Non-def. Positive Negative

t43 Def. Positive Negative

t41 Non-def. Positive Negative

1. 0.5m fixed-prediction

modules have been tested.

2. Count the number of modules

where test results are defective.

3. Rate of Type 1 overlooking = 1 / 5 = 20%.

4. When the rate < 25%,

quit fixed prediction.

Table 1. Statistical summary of datasets and accuracy of reference models

Dataset Version Number of modules Defective modules (Percentage) AUC Precision Recall F1 score

Ant 1.7 745 166 (22.3%) 0.74 46.3% 72.0% 56.3%

Prop 6 660 66 (10.0%) 0.63 17.8% 55.2% 26.9%

Synapse 1.2 256 86 (33.6%) 0.70 56.1% 65.8% 60.5%

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

3

when the number of test target modules is 100, m is set as

10. As shown in the column “Fixed prediction” of Fig. 3, the

fixed prediction of the t1 and t7 modules is set to “positive”.

This restrains Type 1 overlooking and keeps test results (i.e.,

learning data) accurate with high probability. This is because

when the prediction is “positive”, many more test cases are

applied to the module.

Note that the method uses the model's prediction when

m negative-predicted modules have been tested. We could

not avoid Type 2 overlooking (module t5 on the figure) by

the method. The study [8] did not rebuild prediction models

by online learning. Hence, the effect of the method on online

learning is unclear.

Fixed prediction considering the rate of Type 1

overlooking: As explained in Section 2, the probability of

Type 1 overlooking n depends on how much testing resource

is assigned for negative prediction modules. When the

probability is low, the fixed prediction method could

degrade the accuracy of the prediction because the method

increases false-positive prediction.

To avoid the degradation, we propose a new method that

quits the fixed prediction when the rate (i.e., probability) of

Type 1 overlooking is low according to the following

procedure:

1. Do nothing until after 0.5m fixed-prediction modules

have been tested.

2. After each module is tested, count the number of fixed-

prediction modules for which the test results are

defective.

3. Calculate the probability rate, dividing the count of step

2 by the number of tested fixed-prediction modules.

4. When the probability rate (calculated on step 3) is

smaller than 25%, proposed method quit the fixed

prediction.

5. Back to Step 2.

For instance, assume that the number of test target

modules is 100 and the value of 0.5m is 5 in Fig. 4. Five

modules have been tested, and there is one module whose

test result is defective. Therefore, the probability rate is 20%,

and the proposed method quits fixed prediction.

4. Experiment

Settings: In the experiment, we changed the probability of

Type 1 overlooking from 20% to 100% by changing the test

results of the datasets (see Fig.2) artificially. Similarly, we

set the probability of Type 2 overlooking as 20% based on

[2]. Note that the lower bound of the probability of Type 1

overlooking is lower than the probability of Type 2 because

assigned testing resources to negative prediction modules is

not larger than that of positive prediction.

We evaluated the following prediction models:

 Reference: Models where Type 1 and 2 overlooking

never occurs.

 Ordinary: Models without fixed prediction

 Fixed prediction: Models with fixed prediction

 Proposed method: Models with the new method

When evaluating the models, we randomly sorted the

order of modules 40 times and calculated the average of the

evaluation criteria acquired from the 40 repetitions. This is

because the influence of Type 1 overlooking on prediction

accuracy affects the order. For instance, most modules are

predicted as positive in the early iterations of online learning,

and the influence gets smaller (see Section 3). Following

Krishna et al. [4], we set the number of repetitions to 40.

Table 2. Difference between reference and ordinary models

Type 1

overlooking

Ant Prop Synapse

AUC Precision Recall F1 score AUC Precision Recall F1 score AUC Precision Recall F1 score

20% -0.01 0.3% -3.4% -0.9% 0.00 0.5% -2.6% 0.2% -0.02 -0.6% -4.3% -2.2%

40% -0.01 0.9% -5.2% -1.1% -0.01 0.5% -6.1% -0.3% -0.03 -0.2% -9.2% -4.4%

60% -0.02 4.9% -11.8% -1.3% -0.03 0.3% -12.5% -1.7% -0.05 -0.5% -15.8% -8.5%

80% -0.05 7.5% -20.6% -4.0% -0.06 0.2% -23.9% -4.6% -0.08 1.0% -28.7% -16.5%

100% -0.22 -32.3% -65.7% -19.5% -0.13 -13.3% -53.4% -12.7% -0.17 -29.6% -56.6% -33.4%

Table 3. Difference between ordinary and fixed prediction models

Type 1

overlooking

Ant Prop Synapse

AUC Precision Recall F1 score AUC Precision Recall F1 score AUC Precision Recall F1 score

20% -0.03 -8.0% 6.6% -4.5% -0.02 -3.3% 7.8% -3.1% -0.02 -6.8% 7.3% -1.3%

40% -0.02 -8.4% 6.9% -4.4% -0.02 -3.3% 8.0% -2.8% -0.02 -7.6% 9.4% -0.4%

60% -0.02 -12.0% 12.2% -4.2% 0.00 -3.0% 11.7% -1.6% 0.00 -6.9% 13.7% 3.0%

80% 0.00 -13.6% 17.7% -1.5% 0.02 -3.1% 18.8% 0.6% 0.03 -8.2% 23.5% 9.9%

100% 0.17 26.9% 59.5% 13.5% 0.08 10.3% 40.3% 7.5% 0.11 22.0% 48.1% 25.2%

Table 4. Difference between ordinary and proposed models

Type 1

overlooking

Ant Prop Synapse

AUC Precision Recall F1 score AUC Precision Recall F1 score AUC Precision Recall F1 score

20% -0.01 -4.3% 4.7% -1.9% -0.01 -2.0% 4.9% -1.8% -0.02 -5.9% 6.5% -1.0%

40% -0.01 -5.2% 3.8% -2.6% 0.00 -1.4% 7.3% -0.7% -0.01 -5.7% 9.0% 0.7%

60% 0.00 -6.9% 7.0% -1.8% 0.01 -1.5% 8.6% -0.2% 0.00 -6.3% 13.9% 3.5%

80% 0.01 -8.5% 12.4% 0.5% 0.03 -1.4% 13.4% 1.8% 0.03 -8.2% 23.0% 9.7%

100% 0.16 32.0% 50.1% 13.3% 0.07 11.3% 29.9% 6.4% 0.10 21.8% 44.1% 23.2%

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

We randomly selected three datasets (ant, prop, and

synapse) published on PROMISE and D’Ambros et al. [1]

repositories to perform our cross-version defect prediction.

Each dataset includes 20 independent variables, including

product metrics such as CK metrics.

To predict defective modules, we used logistic

regression, a widely used method in defect prediction [1][3].

As a feature selection method, we applied correlation-based

feature selection, which is effective when used with logistic

regression [3]. We used AUC, precision, recall, and F1

scores to evaluate the performance of each prediction model.

Result of ordinary models: Table 1 shows a statistical

summary of datasets and the evaluation criteria of reference

models. Table 2 shows the difference between reference and

ordinary models. The negative values in Table 2 indicate

that the accuracy of ordinary models degrades the reference.

Except for the probability of Type 1 overlooking is 100%,

the degradation of AUC, precision, and F1 score was

moderate. However, the degradation of recall was over 10%

when the probability rate was equal to or larger than 60%.

That is, Type 1 overlooking mainly affects the recall of

prediction models, which could cause residual defects and

degradation of software quality.

Result of fixed prediction models: Table 3 shows the

difference between the ordinary and fixed prediction models.

Positive values denote that the fixed prediction model

improved in accuracy. Overall, the recall has also

significantly improved. For the ant dataset, the AUC value

had degraded when the percentage of Type 1 overlooking

was equal to or less than 60%, and degradation of the

precision was large (i.e., over 8%), regardless of the

percentage.

Result of proposed models: Table 4 shows the

difference between ordinal and proposed models. Positive

values on the table denote that the accuracy was improved

by the proposed method. AUC did not degrade when the

percentage of Type 1 overlooking was larger than 60%, and

the extent of the degradation was minimal even when the

percentage was 20%. Similarly, when the percentage was

equal to or larger than 80%, the F1 score improved, and the

degradation was negligible compared with Table 3. The

degradation of precision was smaller than 9%. Compared

with Tables 3 and 4, the proposed method suppressed

negative influences of fixed prediction, even when the

percentage of Type 1 overlooking was 20%.

5. Conclusion

This paper focused on software defect prediction models

built using online learning. Although the approach is

effective, it is affected by overlooking defects. When

modules are predicted as “non-defective,” fewer test cases

are allocated for those modules. Consequently, defects can

be overlooked during software testing, even when the

module is defective. This overlooking distorts the learning

data utilized by online learning.

To mitigate the influence of overlooking, we propose

applying a fixed prediction method, which forcibly turns the

prediction as “defective” during the initial stage of online

learning. However, the method always turns prediction,

even when the overlooking seldom occurs. This could

degrade the precision of the defect prediction. To address the

issue, we propose a new method that discontinues the fixed

prediction method when the rate of occurrence of

overlooking is low.

We used three datasets in the experiment and artificially

manipulated the probability of overlooking. The

experimental results showed the following:

 When defect prediction models were built using online

learning without the fixed prediction method (i.e., the

existing approach), the recall was degraded by over

10% when the probability of overlooking was 60% or

greater.

 The recall improved significantly when the models

were built using the fixed prediction method. However,

precision was degraded by over 5% on two of three

datasets, regardless of the probability of overlooking.

 When the models were built using the proposed method,

the AUC and F1 scores improved when the probability

of overlooking was 80% or greater. Compared with the

fixed prediction method, the degradation of AUC,

precision, and F1 score was minor, but the recall

improvement from the existing approach was steady.

The result suggests that using the proposed method, even

if testing resources are drastically reduced for modules that

are predicted as defective, the accuracy and recall of the

prediction models are not significantly affected.

Acknowledgments

This research is partially supported by the Japan Society for

the Promotion of Science [Grants-in-Aid for Scientific

Research (C) (No.21K11840).

References

[1] M. D’Ambros, M., Lanza, and R. Robbes, “Evaluating defect

prediction approaches a benchmark and an extensive comparison,”

Empirical Software Engineering, vol.17, no.4-5, pp.531-577, 2012.

[2] Information-technology Promotion Agency (IPA), Japan, The

2018-2019 White Paper on Software Development Projects, IPA,

2018 (in Japanese).

[3] M. Kondo, C. Bezemer, Y. Kamei, A. Hassan, and O. Mizuno,

“The impact of feature reduction techniques on defect prediction

models,” Empirical Software Engineering, vol.24, no.4, pp.1925-

1963, 2019.

[4] R. Krishna, T. Menzies and W. Fu, “Too much automation? The

bellwether effect and its implications for transfer learning,” Ptoc.

Of International Conference on Automated Software Engineering

(ASE), pp.122-131, 2016.

[5] S. Mahfuz, Software Quality Assurance - Integrating Testing,

Security, and Audit, CRC Press, 2016.

[6] M. Shepperd, D. Bowes, and T. Hall, “Researcher Bias: The Use

of Machine Learning in Software Defect Prediction,” IEEE

Transactions on Software Engineering, vol.40, no.6, pp.603-616,

2014.

[7] S. Tabassum, L. Minku, D. Feng, G. Cabral and L. Song, “An

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

5

Investigation of Cross-Project Learning in Online Just-In-Time

Software Defect Prediction,” Proc. of International Conference on

Software Engineering (ICSE), pp.554-565, 2020.

[8] M. Tsunoda, A. Monden, K. Toda, A. Tahir, K. Bennin, K. Nakasai,

M. Nagura, and K. Matsumoto, “Using Bandit Algorithms for

Selecting Feature Reduction Techniques in Software Defect

Prediction,” Proc. of Mining Software Repositories Conference

(MSR), pp.670-681, 2022.

[9] T. Zimmermann and N. Nagappan, “Predicting defects using

network analysis on dependency graphs,” Proc. of International

Conference on Software Engineering (ICSE), pp.531-540, 2008.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

