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SUMMARY  Cross-project defect prediction (CPDP) aims to use data from 
external projects as historical data may not be available from the same 
project. In CPDP, deciding on a particular historical project to build a 
training model can be difficult. To help with this decision, a Bandit 
Algorithm (BA) based approach has been proposed in prior research to 
select the most suitable learning project. However, this BA method could 
lead to the selection of unsuitable data during the early iteration of BA (i.e., 
early stage of software testing). Selecting an unsuitable model can reduce 
the prediction accuracy, leading to potential defect overlooking. This study 
aims to improve the BA method to reduce defects overlooking, especially 
during the early testing stages. Once all modules have been tested, modules 
tested in the early stage are re-predicted, and some modules are retested 
based on the re-prediction. To assess the impact of re-prediction and 
retesting, we applied five kinds of BA methods, using 8, 16, and 32 OSS 
projects as learning data. The results show that the newly proposed 
approach steadily reduced the probability of defect overlooking without 
degradation of prediction accuracy. 
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1. Introduction 

Software testing is a critical step in discovering and 
removing defects. However, testing can be less frequent due 
to the limited resources (especially human effort and time) 
[12]. Defect prediction models are applied to find potential 
defects easily and early in the testing phase. When a module 
is regarded as defective by the prediction model, testing 
resources can be allocated to such modules for thorough 
testing [9]. Thus, improving the accuracy of prediction 
models can lower testing efforts and improve software 
quality. 

Data collected on the previous version of the prediction 
target software is often used to build a defect prediction 
model. However, newly built software will not have any 
training data for the prediction model. A feasible solution is 
to use data collected from other software projects (obtained 
internally or externally). This is referred to as cross-project 
defect prediction (CPDP). CPDP has attracted increased 

attention in recent years [4]. However, the characteristics of 
software projects can vary from one project to another. 
CPDP models trained on arbitrarily selected projects 
different from the target project do not perform well [11]. 

Still, there are challenges in identifying suitable projects 
for data training [8]. To help with the selection, a Bandit 
Algorithm (BA) based approach has been proposed to select 
the most suitable learning project [2]. However, this BA 
method could lead to the selection of unsuitable data during 
the early iteration of BA (i.e., early stage of software testing). 
Selecting an unsuitable model can reduce the prediction 
accuracy, leading to potential defect overlooking. The study 
aims to improve the BA method to reduce defects 
overlooking, especially during the early stage of testing. 

2. Bandit Algorithm (BA) Based Defect Prediction 

Overview: Our previous work has extensively discussed 
bandit algorithm (BA) based defect prediction [10]. The BA 
method assumes the following: 

�  B1: Each module is tested sequentially during testing. 
�  B2: The test result of each module is recorded. 

Except for “big-bang” Integration testing, each module 
is tested sequentially during the testing phase [1], and results 
are recorded - even when we do not apply the BA method. 
Therefore, most software development satisfies B1 and B2. 

The BA-based method builds prediction models using 
data from different projects as learning data. During 
software testing, the model is not rebuilt. Therefore, 
selecting one of the models means selecting the learning data. 
In Fig.1, four prediction models are built before testing, 
using data collected from projects A, B, C, and D as learning 
data. In the figure, 100 modules are sequentially tested, and 
the numbers in parenthesis signify the test order of the 
modules. In this case, module t21 is the test target module, 
and gray rows signify tested modules. ND, DE, CO, and WR 
mean non-defective, defective, correct, and wrong, 
respectively. 

As shown in Fig. 1, the BA method selects a higher-
accuracy model by performing the following procedure. 

Step 1. Select a model randomly. 
Step 2. Use the prediction of the selected model. 
Step 3. Test the module and record the result. 
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Step 4. Compare the test result and prediction of each 
model. 

Step 5. Compare the accuracy of each model and select the 
model with the highest accuracy. 

Step 6. Return to Step 2 until all modules are tested. 

In step 5, we used AUC to measure prediction accuracy [10]. 
Several methods can be used to select the models, such as � -
greedy and UCB (Upper Confidence Bound). 

Incorrect selection: BA's number of comparisons (i.e., 
accuracy evaluation of predictions) needs to be increased 
during the early stage of software testing. Therefore, the 
results could vary when the evaluation increases. For 
instance, in Fig. 1, model A is selected for module t21, tested 
fifth. However, model A's accuracy is lower than B when all 
100 modules have been tested (e.g., t02 in Fig. 1). 

Hence, the prediction during the early stage could be 
incorrect, as shown in the two cases below: 

�  Case � : When the prediction is defective but the 
module does not contain defects, the module is tested 
thoroughly with high effort, but still, no defects are 
found. As a result, the testing effort increases 
significantly. 

�  Case � : When the prediction is non-defective, but the 
module contains defects. The module is then tested 
lightly with low effort to suppress the total cost of 
testing [9]. This causes defect overlooking, resulting in 

residual defects on the module and degrading software 
quality. 

Fig. 2 shows the relationship between prediction and test 
results. The figure also includes test effort and residual 
defects, which are mentioned in the explanations of cases �  
and � . In Fig. 2, test modules and prediction for them are the 
same as in Fig. 1. In the figure, modules t38 and t75 are case 
�  and � , respectively. After all modules are tested, there is 
no way to recover the increased effort on case � . In contrast, 
we could suppress residual defects to some extent in case �  
by retesting modules thoroughly if we can identify 
candidates of case �  (i.e., defect-overlooked modules). 

3. Re-prediction and Retesting Approach 

Overview: We propose re-prediction and retesting to 
identify case �  modules. Our approach assumes the 
following: 

�  R1: Modules tested earlier could include residual 
defects due to the lower accuracy of the selected model. 

�  R2: For a module, the cost due to residual defects is 
higher than retesting the module. 

R1 considers that model evaluation is insufficient during 
the early testing stage. As a result, defect prediction on 
modules tested during this stage might be inaccurate. 

The total effort for a retested module is the sum of testing 
and retesting efforts for that particular module. Although the 
former is excessive due to an inaccurate prediction, as 
shown in Fig. 2, the testing effort is low. This is because 
fewer test cases are created than cases made for modules that 
are predicted as defective. When defects are overlooked 
during a phase but removed in a later phase, the effort of the 
removal increases excessively [3].   

A retest based on defect re-prediction will be performed 
using the following procedure. 

 
Fig. 1 Procedure of BA based defect prediction 
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Fig. 3 Procedure of retesting based on defect re-prediction 
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Fig. 2 Relationship between prediction and test result 
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Step 1. After all modules have been tested, the re-

prediction model is settled based on the accuracy of 

each model (see Fig. 1).  

Step 2. Perform Step 2 of BA if the prediction by the 

selected model was non-defective (i.e., candidates 

of case β). 

Step 3. If Step 2 is performed, perform Step 3 ... 5 of BA 

when the prediction by the re-prediction model is 

defective. 

Step 4. Return to Step 2 until all modules are re-predicted. 

Fig. 3 illustrates this retesting-based procedure. Based on 

Step 3 (i.e., Step 3 ... 5 of BA), the re-prediction model could 

be changed during this procedure. For instance, the figure 

changes the model from B to C after retesting module t19. 

Application range: Note that the application of this 

proposed approach is not limited to the BA method and 

CPDP. For instance, we can apply the same concept to 

CVDP (cross-version defect prediction), which uses data 

collected during the development of the previous version as 

learning data. Additionally, as a re-prediction model, we can 

adopt a new model that uses test results as learning data (i.e., 

online learning). 

Multiple retests: After all modules have been re-

predicted and retested, we can repeatedly perform the 

procedure from the first module. For instance, in Fig. 3, if 

the re-prediction model turns model D on the second 

iteration of the re-prediction, module t56 is then proposed to 

be retested because the module was not tested in the first 

iteration. We call this a multiple retests approach. 

4. Experiment 

Dataset: In our experiment, we used data from 33 open-

source projects provided in the DefectData dataseta). For the 

test data, we used the arc project. The arc project includes 

235 modules, of which 11.5% are defective. We used 

Chidamber & Kemerer (CK) metrics as candidates for 

explanatory variables. 

As learning data, we randomly selected 8, 16, and 32 

pieces of projects from the remaining 32 projects. With 

many candidates for learning data, it could be difficult for 

the BA method to select the best learning data. Therefore, 

we changed the amount of learning data candidates. 

Defect overlooking with “defective” prediction: Even 

when the prediction by the model is “defective,” some 

defects could be overlooked. Typically, defects that are 

discovered after release are considered as overlooked 

defects. A recent industrial survey [5] reported that about 

17% of defects are overlooked during integration testing. 

The overlooking could occur when the test result is 

“defective” (and defects might be found during testing and 

after the software release). We call this case �  (see Fig.2). 

Therefore, similar to [10], to simulate those overlooked 

defects, we randomly changed the evaluation of BA at 20% 

                                                           
a) https://github.com/klainfo/DefectData 

probability when the modules are defective. 

Prediction method: we applied logistic regression to 

predict defective modules, as it is one of the most widely 

used methods in CPDP. As a feature selection method, we 

applied correlation-based feature selection, which is 

effective when used together with logistic regression [6]. As 

BAs, we used ε-greedy (ε = 0, 0.1, 0.2, and 0.3) and UCB 

(Upper Confidence Bound). We compared the CPDP 

performance of the following approaches: 

 Baseline approach: Perform the test only with the 

ordinal BA method 

 Retest approach: Perform not only the test but also 

retest with the re-prediction method 

 Multiple retests approach: Perform the test once and 

retest twice with the re-prediction method 

Evaluation criteria: We used AUC to evaluate the 

performance of CPDP. The performance of the BA method 

and our approach could be affected by the order of tested 

modules. Therefore, we randomly changed the order of 

modules, calculated the AUC 40 times, and computed the 

average AUC. Following Krishna et al. [7], we set the 

number of repetitions to 40. Note that when calculating the 

AUC of the retest (and multiple retests) approach, although 

the proposed methods updated some non-defective 

predictions (e.g., t75 and t19), defective predictions were not 

updated (e.g., t38). 

We also used the number of defects found by the 

prediction (i.e., the number of true positives) to evaluate the 

performance of each approach. This is because when the 

number increases, defects that are overlooked during the 

testing phase can be suppressed but removed later (see 

Section 3). Note that even if the number of true positives 

(i.e., found defects) increases, AUC cannot be improved 

when the number of false negatives also increases. Therefore, 

we consider both AUC and the number of found defects. 

For the evaluation, we defined RDIFF  (relative 

difference) [6] and DIFF  (difference) as follows: 

����� � �� � 	 
 �
�
���
���� ��� �

�
���
���� ��� �
� � � ��	 �

���� � �� � 	 
 � ���������� ��� � � � ���������� ��� �� � � 	 �

In the equations, the criterion of α denotes the number of 

found defects by approach α, for instance. For instance, the 

number of found defects by the baseline approach is 50, and 

that by the retest one is 55, RDIFF(baseline, retest) is 0.1 

(i.e., 10%). Positive values of DIFF(α, β) and RDIFF(α, β) 

denote that the approach β improves the performance. 

To check the statistical difference in the criteria between 

the approaches, we applied the Wilcoxon signed-rank test in 

the analysis. 

Research questions: To clarify the purpose of the 

evaluation, we set the following research questions: 

 RQ1: Is the retest approach more effective than the 
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baseline approach?  

 RQ2: To what extent is the effect of the multiple retests 

approach compared to the retest approach?  

To answer RQ1, we calculated the differences in AUC 

between the baseline and retest approaches. Similarly, to 

answer RQ2, we calculated the differences between the 

retest and multiple retests approaches. 

Analysis related to RQ1: Table 1 shows the 

performance of each approach. As shown in the table, B, R, 

and MR denote the baseline, retest, and multiple retests 

approaches. The left side of the table shows the DIFF and 

RDIFF of the AUC of each approach. Values in parenthesis 

denote p-values by the Wilcoxon signed-rank test. Light-

gray cells mean the p-value is smaller than 0.1, and gray 

cells with boldface the p-value is smaller than 0.05. Table 2 

shows the AUC and the number of defects of the baseline. 

In the table, Proj. means the number of projects used as 

learning datasets. 

All values of DIFF(B, R) and DIFF(B, MR) of AUC 

were positive, and the average AUC between the baseline 

and our approaches was statistically different at 0.05 level, 

except for when 16 projects were used and the multiple 

retests approach was applied (see the bottom rows of Table 

1). The minimum value of average RDIFF(B, R) and 

RDIFF(B, MR) of AUC was 1.1%, and the maximum one 

was 2.7%. In the work of Kondo et al. [6], the average 

RDIFF of AUC was 1.6% when the best feature reduction 

technique was applied to defect prediction models such as 

logistic regression. Compared with the study [6], average 

RDIFF of AUC on our approaches is not very small. 

While AUC on each type of BA, such as ε = 0, was not 

always statistically different. For instance, when 16 projects 

were used, and the type of BA was ε = 0, AUC was not 

statistically different between the baseline and our 

approaches.  

The right side of Table 1 shows the DIFF(B, R) and 

DIFF(B, MR) of found defects between the baseline and our 

approaches. The differences were statistically significant at 

the 0.05 level in all cases, and the average RDIFF(B, R) and 

RDIFF(B, MR) of found defects was 17.4% at the minimum 

(see the bottom rows of Table 1). That is, our approaches 

significantly improved the number of found defects without 

degradation of AUC. 

Therefore, the retest and the multiple retests approach 

performed better than the baseline. To answer RQ1, we 

found that the retest and multiple retests approaches are 

more effective than the baseline ones. 

Analysis related to RQ2: On the left side of Table 1, 

most DIFF(R, MR) of AUC were positive when 32 projects 

were used as learning data. In contrast, many were negative 

when 8 and 16 projects were used, and the degradations were 

significantly significant at 0.05 in many cases. 

On the right side of Table 1, many of the DIFF(R, MR) 

of found defects were more than zero, and the differences 

between the retest and multiple retests approaches were 

statistically significant at 0.05 level in many cases. The 

Table 1. Performance of each approach 

 (a) 32 projects used as learning data 

Type 

AUC Number of found defects 

DIFF 

(B, R) 

DIFF 

(B, MR) 

DIFF 

(R, MR) 

RDIFF 

(B, R) 

RDIFF 

(B, MR) 

RDIFF 

(R, MR) 

DIFF 

(B, R) 

DIFF 

(B, MR) 

DIFF 

(R, MR) 

RDIFF 

(B, R) 

RDIFF 

(B, MR) 

RDIFF 

(R, MR) 

ε = 0 0.014 (0.00) 0.016 (0.00) 0.002 (0.96) 2.4% 2.6% 0.3% 1.3 (0.00) 1.5 (0.00) 0.2 (0.07) 25.3% 27.3% 1.9% 

ε = 0.1 0.023 (0.00) 0.030 (0.00) 0.007 (0.41) 3.8% 5.0% 1.1% 3.1 (0.00) 5.4 (0.00) 2.3 (0.00) 46.8% 103.1% 56.3% 

ε = 0.2 0.022 (0.10) 0.023 (0.11) 0.001 (0.60) 3.5% 3.8% 0.2% 4.2 (0.00) 6.4 (0.00) 2.2 (0.00) 87.2% 131.0% 43.8% 

ε = 0.3 0.011 (0.38) 0.001 (0.71) -0.010 (0.00) 1.8% 0.2% -1.5% 3.6 (0.00) 4.8 (0.00) 1.2 (0.00) 35.1% 47.2% 12.1% 

UCB 0.010 (0.06) 0.012 (0.04) 0.002 (0.91) 1.7% 2.1% 0.3% 1.4 (0.00) 1.8 (0.00) 0.4 (0.01) 33.1% 42.2% 9.1% 

Average 0.016 (0.00) 0.017 (0.00) 0.001 (0.04) 2.6% 2.7% 0.1% 2.7 (0.00) 4.0 (0.00) 1.2 (0.00) 45.5% 70.1% 24.7% 

 (b) 16 projects used as learning data 

Type 

AUC Number of found defects 

DIFF 

(B, R) 

DIFF 

(B, MR) 

DIFF 

(R, MR) 

RDIFF 

(B, R) 

RDIFF 

(B, MR) 

RDIFF 

(R, MR) 

DIFF 

(B, R) 

DIFF 

(B, MR) 

DIFF 

(R, MR) 

RDIFF 

(B, R) 

RDIFF 

(B, MR) 

RDIFF 

(R, MR) 

ε = 0 0.007 (0.65) 0.005 (0.83) -0.002 (0.17) 1.1% 0.8% -0.3% 1.0 (0.00) 1.1 (0.00) 0.1 (0.18) 13.2% 14.2% 1.0% 

ε = 0.1 0.018 (0.15) 0.013 (0.97) -0.004 (0.05) 2.8% 2.1% -0.7% 3.0 (0.00) 4.0 (0.00) 1.0 (0.00) 37.8% 51.1% 13.2% 

ε = 0.2 0.013 (0.21) 0.006 (0.80) -0.007 (0.02) 2.0% 0.9% -1.1% 3.7 (0.00) 5.4 (0.00) 1.7 (0.00) 41.9% 63.7% 21.8% 

ε = 0.3 0.008 (0.29) 0.002 (0.95) -0.007 (0.03) 1.3% 0.3% -1.0% 3.7 (0.00) 4.9 (0.00) 1.2 (0.00) 35.3% 47.8% 12.5% 

UCB 0.011 (0.01) 0.010 (0.01) 0.000 (0.49) 1.7% 1.6% 0.0% 1.1 (0.00) 1.1 (0.00) 0.0 (0.32) 12.4% 12.6% 0.2% 

Average 0.011 (0.00) 0.007 (0.39) -0.004 (0.00) 1.8% 1.1% -0.6% 2.5 (0.00) 3.3 (0.00) 0.8 (0.00) 28.1% 37.9% 9.7% 

 (c) 8 projects used as learning data 

Type 

AUC Number of found defects 

DIFF 

(B, R) 

DIFF 

(B, MR) 

DIFF 

(R, MR) 

RDIFF 

(B, R) 

RDIFF 

(B, MR) 

RDIFF 

(R, MR) 

DIFF 

(B, R) 

DIFF 

(B, MR) 

DIFF 

(R, MR) 

RDIFF 

(B, R) 

RDIFF 

(B, MR) 

RDIFF 

(R, MR) 

ε = 0 0.002 (0.09) 0.002 (0.14) 0.000 (0.10) 0.4% 0.3% 0.0% 0.4 (0.00) 0.4 (0.00) 0.0 (1.00) 2.9% 2.9% 0.0% 

ε = 0.1 0.005 (0.34) 0.021 (0.00) 0.016 (0.02) 0.7% 3.3% 2.5% 1.0 (0.00) 2.6 (0.00) 1.7 (0.00) 13.5% 47.0% 33.5% 

ε = 0.2 0.019 (0.00) 0.022 (0.02) 0.003 (0.62) 3.0% 3.5% 0.4% 2.9 (0.00) 4.0 (0.00) 1.1 (0.00) 41.6% 62.3% 20.7% 

ε = 0.3 0.012 (0.10) 0.008 (0.33) -0.004 (0.03) 1.9% 1.2% -0.7% 2.4 (0.00) 2.9 (0.00) 0.6 (0.00) 24.8% 30.0% 5.2% 

UCB 0.004 (0.07) 0.003 (0.15) -0.001 (0.03) 0.6% 0.5% -0.1% 0.5 (0.00) 0.5 (0.00) 0.0 (1.00) 4.1% 4.1% 0.0% 

Average 0.008 (0.00) 0.011 (0.00) 0.003 (0.75) 1.3% 1.8% 0.4% 1.4 (0.00) 2.1 (0.00) 0.7 (0.00) 17.4% 29.3% 11.9% 
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average RDIFF(R, MR) in the found defects was 9.7% at the 

minimum. However, as explained above, AUC was 

degraded by the multiple retests approach when 8 and 16 

projects were used. Hence, applying the multiple retests 

approach is recommended only when many projects are used 

as learning data. For RQ2, the effect of the multiple retests 

approach was smaller than that of the retest approach, 

especially when many projects are not used as learning data. 

The results suggested that our approach suppressed 

defect overlooking without degradation of AUC. However, 

as explained in Section 3, our approach may increase the 

retest effort. 

5. Conclusion 

In CPDP, it is challenging to select suitable projects to use 

for model training. In prior research, Bandit Algorithm (BA) 

based methods have been used to select projects as learning 

data. However, in the early stage of software testing, BA can 

lead to the selection of unsuitable models. The model could 

predict defective modules as “non-defective”, leading to 

defects overlooking. We proposed a retest based on defect 

re-prediction to lessen the probability of such overlooking. 

Our proposed approach is promising because it can have a 

wide range of applications and is not limited to CPDP. 

In the experiment, we evaluated the performance of two 

types of our approach, the retest approach and the multiple 

retests approach, compared with the baseline approach, 

which performs tests only with the ordinal BA method. As 

evaluation criteria, we used AUC and the number of found 

defects. As a result, our approach was more effective than 

the baseline approach. Additionally, the effect of the 

multiple retests approach was smaller than the retest 

approach. Although our approach may increase the retesting 

effort, it is expected to lessen the probability of defect 

overlooking. In future work, we will apply our approach to 

other combinations, such as CVDP and online learning 

methods. 
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Table 2. Baseline performance of each approach 

Type 
AUC Number of found defects 

32 Proj. 16 Proj. 8 Proj. 32 Proj. 16 Proj. 8 Proj. 

ε = 0 0.599 0.616 0.632 8.3 9.9 10.4 

ε = 0.1 0.599 0.629 0.630 9.7 11.2 10.7 

ε = 0.2 0.612 0.628 0.627 11.1 12.2 10.8 

ε = 0.3 0.623 0.632 0.647 12.8 13.1 12.1 

UCB 0.604 0.629 0.627 9.0 10.5 10.2 

Average 0.607 0.627 0.633 10.2 11.4 10.8 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

