
DOI:10.1587/transinf.2024MPL0002

Publicized:2024/09/09

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

LETTER

The Impact of Defect (Re) Prediction on Software Testing

 Yukasa MURAKAMI†, Yuta YAMASAKI††, Nonmembers, Masateru TSUNODA††,
Akito MONDEN†, Members, Amjed TAHIR†††, Kwabena Ebo BENNIN††††, Nonmembers,

Koji TODA†††††, Member, and Keitaro NAKASAI††††††, Nonmember

SUMMARY Cross-project defect prediction (CPDP) aims to use data from
external projects as historical data may not be available from the same
project. In CPDP, deciding on a particular historical project to build a
training model can be difficult. To help with this decision, a Bandit
Algorithm (BA) based approach has been proposed in prior research to
select the most suitable learning project. However, this BA method could
lead to the selection of unsuitable data during the early iteration of BA (i.e.,
early stage of software testing). Selecting an unsuitable model can reduce
the prediction accuracy, leading to potential defect overlooking. This study
aims to improve the BA method to reduce defects overlooking, especially
during the early testing stages. Once all modules have been tested, modules
tested in the early stage are re-predicted, and some modules are retested
based on the re-prediction. To assess the impact of re-prediction and
retesting, we applied five kinds of BA methods, using 8, 16, and 32 OSS
projects as learning data. The results show that the newly proposed
approach steadily reduced the probability of defect overlooking without
degradation of prediction accuracy.

keywords: Software fault prediction, online optimization, lookback, CPDP

1. Introduction

Software testing is a critical step in discovering and
removing defects. However, testing can be less frequent due
to the limited resources (especially human effort and time)
[12]. Defect prediction models are applied to find potential
defects easily and early in the testing phase. When a module
is regarded as defective by the prediction model, testing
resources can be allocated to such modules for thorough
testing [9]. Thus, improving the accuracy of prediction
models can lower testing efforts and improve software
quality.

Data collected on the previous version of the prediction
target software is often used to build a defect prediction
model. However, newly built software will not have any
training data for the prediction model. A feasible solution is
to use data collected from other software projects (obtained
internally or externally). This is referred to as cross-project
defect prediction (CPDP). CPDP has attracted increased

attention in recent years [4]. However, the characteristics of
software projects can vary from one project to another.
CPDP models trained on arbitrarily selected projects
different from the target project do not perform well [11].

Still, there are challenges in identifying suitable projects
for data training [8]. To help with the selection, a Bandit
Algorithm (BA) based approach has been proposed to select
the most suitable learning project [2]. However, this BA
method could lead to the selection of unsuitable data during
the early iteration of BA (i.e., early stage of software testing).
Selecting an unsuitable model can reduce the prediction
accuracy, leading to potential defect overlooking. The study
aims to improve the BA method to reduce defects
overlooking, especially during the early stage of testing.

2. Bandit Algorithm (BA) Based Defect Prediction

Overview: Our previous work has extensively discussed
bandit algorithm (BA) based defect prediction [10]. The BA
method assumes the following:

� B1: Each module is tested sequentially during testing.
� B2: The test result of each module is recorded.

Except for “big-bang” Integration testing, each module
is tested sequentially during the testing phase [1], and results
are recorded - even when we do not apply the BA method.
Therefore, most software development satisfies B1 and B2.

The BA-based method builds prediction models using
data from different projects as learning data. During
software testing, the model is not rebuilt. Therefore,
selecting one of the models means selecting the learning data.
In Fig.1, four prediction models are built before testing,
using data collected from projects A, B, C, and D as learning
data. In the figure, 100 modules are sequentially tested, and
the numbers in parenthesis signify the test order of the
modules. In this case, module t21 is the test target module,
and gray rows signify tested modules. ND, DE, CO, and WR
mean non-defective, defective, correct, and wrong,
respectively.

As shown in Fig. 1, the BA method selects a higher-
accuracy model by performing the following procedure.

Step 1. Select a model randomly.
Step 2. Use the prediction of the selected model.
Step 3. Test the module and record the result.

 † The authors are from Okayama University, Japan.
 †† The authors are with Kindai University, Japan.
 ††† The author is with Massey University, New Zealand.
 †††† The author is with Wageningen University & Research,

the Netherlands.
 ††††† The author is with Fukuoka Institute of Technology,

Japan.
 †††††† The author is with Osaka Metropolitan University

College of Technology, Japan.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
2

Step 4. Compare the test result and prediction of each
model.

Step 5. Compare the accuracy of each model and select the
model with the highest accuracy.

Step 6. Return to Step 2 until all modules are tested.

In step 5, we used AUC to measure prediction accuracy [10].
Several methods can be used to select the models, such as � -
greedy and UCB (Upper Confidence Bound).

Incorrect selection: BA's number of comparisons (i.e.,
accuracy evaluation of predictions) needs to be increased
during the early stage of software testing. Therefore, the
results could vary when the evaluation increases. For
instance, in Fig. 1, model A is selected for module t21, tested
fifth. However, model A's accuracy is lower than B when all
100 modules have been tested (e.g., t02 in Fig. 1).

Hence, the prediction during the early stage could be
incorrect, as shown in the two cases below:

� Case � : When the prediction is defective but the
module does not contain defects, the module is tested
thoroughly with high effort, but still, no defects are
found. As a result, the testing effort increases
significantly.

� Case � : When the prediction is non-defective, but the
module contains defects. The module is then tested
lightly with low effort to suppress the total cost of
testing [9]. This causes defect overlooking, resulting in

residual defects on the module and degrading software
quality.

Fig. 2 shows the relationship between prediction and test
results. The figure also includes test effort and residual
defects, which are mentioned in the explanations of cases �
and � . In Fig. 2, test modules and prediction for them are the
same as in Fig. 1. In the figure, modules t38 and t75 are case
� and � , respectively. After all modules are tested, there is
no way to recover the increased effort on case � . In contrast,
we could suppress residual defects to some extent in case �
by retesting modules thoroughly if we can identify
candidates of case � (i.e., defect-overlooked modules).

3. Re-prediction and Retesting Approach

Overview: We propose re-prediction and retesting to
identify case � modules. Our approach assumes the
following:

� R1: Modules tested earlier could include residual
defects due to the lower accuracy of the selected model.

� R2: For a module, the cost due to residual defects is
higher than retesting the module.

R1 considers that model evaluation is insufficient during
the early testing stage. As a result, defect prediction on
modules tested during this stage might be inaccurate.

The total effort for a retested module is the sum of testing
and retesting efforts for that particular module. Although the
former is excessive due to an inaccurate prediction, as
shown in Fig. 2, the testing effort is low. This is because
fewer test cases are created than cases made for modules that
are predicted as defective. When defects are overlooked
during a phase but removed in a later phase, the effort of the
removal increases excessively [3].

A retest based on defect re-prediction will be performed
using the following procedure.

Fig. 1 Procedure of BA based defect prediction

Test
Module
(order)

Prediction Selected
model

(Prediction)

Test
result

Evaluation on test
Model

A
Model

B
Model

C
Model

D
Model

A
Model

B
Model

C
Model

D
AUC
of A

AUC
of B

AUC
of C

AUC
of D

...
t38 (4) DE ND DE DE A (DE) ND WR CO WR WR 0.75 0.74 0.73 0.72
t21 (5) DE DE DE DE A (DE) DE CO CO CO CO 0.76 0.75 0.74 0.73
t75 (6) ND DE DE DE A (ND) ND CO WR WR WR 0.77 0.74 0.73 0.72
t19 (7) ND DE ND ND A (ND) ND CO WR CO CO 0.78 0.73 0.74 0.73
t56 (8) ND ND ND DE A (ND) ND CO CO CO WR 0.79 0.74 0.75 0.72

...
t02 (100) ND DE DE DE B (DE) ND WR CO CO CO 0.75 0.77 0.74 0.73

2 3 4 5

Re-prediction model

Fig. 3 Procedure of retesting based on defect re-prediction

Test
module
(order)

Prediction Re-prediction
model

(Prediction)

Retest
result

Evaluation on retest
Test
effort

Retest
effortModel

A
Model

B
Model

C
Model

D
Model

A
Model

B
Model

C
Model

D
AUC
of A

AUC
of B

AUC
of C

AUC
of D

...
t38 (4) DE ND DE DE B (ND) - WR CO WR WR 0.73 0.74 0.73 0.72 High -
t21 (5) DE DE DE DE B (DE) - CO CO CO CO 0.74 0.75 0.74 0.73 High
t75 (6) ND DE DE DE B (DE) DE WR CO CO CO 0.73 0.76 0.75 0.74 Low High
t19 (7) ND DE ND ND B (DE) ND CO WR CO CO 0.74 0.75 0.76 0.75 Low High
t56 (8) ND ND ND DE C (ND) - CO CO CO WR 0.75 0.76 0.77 0.74 Low -

...
t02 (100) ND DE DE DE D (DE) - WR CO CO CO 0.75 0.77 0.74 0.78 High -

2 3 Excessive
effort

Gray cells : differences in predictions and their evaluations from previous ones

Fig. 2 Relationship between prediction and test result

Test
Module
(order)

Selected
model

(Prediction)

Test
result

Test
effort

Residual
defects

...
t38 (4) A (DE) ND High No
t21 (5) A (DE) DE High No
t75 (6) A (ND) ND Low Yes
t19 (7) A (ND) ND Low No
t56 (8) A (ND) ND Low No

...
t02 (100) B (DE) ND High Yes

Case �

Case �

Case �

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

3

Step 1. After all modules have been tested, the re-

prediction model is settled based on the accuracy of

each model (see Fig. 1).

Step 2. Perform Step 2 of BA if the prediction by the

selected model was non-defective (i.e., candidates

of case β).

Step 3. If Step 2 is performed, perform Step 3 ... 5 of BA

when the prediction by the re-prediction model is

defective.

Step 4. Return to Step 2 until all modules are re-predicted.

Fig. 3 illustrates this retesting-based procedure. Based on

Step 3 (i.e., Step 3 ... 5 of BA), the re-prediction model could

be changed during this procedure. For instance, the figure

changes the model from B to C after retesting module t19.

Application range: Note that the application of this

proposed approach is not limited to the BA method and

CPDP. For instance, we can apply the same concept to

CVDP (cross-version defect prediction), which uses data

collected during the development of the previous version as

learning data. Additionally, as a re-prediction model, we can

adopt a new model that uses test results as learning data (i.e.,

online learning).

Multiple retests: After all modules have been re-

predicted and retested, we can repeatedly perform the

procedure from the first module. For instance, in Fig. 3, if

the re-prediction model turns model D on the second

iteration of the re-prediction, module t56 is then proposed to

be retested because the module was not tested in the first

iteration. We call this a multiple retests approach.

4. Experiment

Dataset: In our experiment, we used data from 33 open-

source projects provided in the DefectData dataseta). For the

test data, we used the arc project. The arc project includes

235 modules, of which 11.5% are defective. We used

Chidamber & Kemerer (CK) metrics as candidates for

explanatory variables.

As learning data, we randomly selected 8, 16, and 32

pieces of projects from the remaining 32 projects. With

many candidates for learning data, it could be difficult for

the BA method to select the best learning data. Therefore,

we changed the amount of learning data candidates.

Defect overlooking with “defective” prediction: Even

when the prediction by the model is “defective,” some

defects could be overlooked. Typically, defects that are

discovered after release are considered as overlooked

defects. A recent industrial survey [5] reported that about

17% of defects are overlooked during integration testing.

The overlooking could occur when the test result is

“defective” (and defects might be found during testing and

after the software release). We call this case � (see Fig.2).

Therefore, similar to [10], to simulate those overlooked

defects, we randomly changed the evaluation of BA at 20%

a) https://github.com/klainfo/DefectData

probability when the modules are defective.

Prediction method: we applied logistic regression to

predict defective modules, as it is one of the most widely

used methods in CPDP. As a feature selection method, we

applied correlation-based feature selection, which is

effective when used together with logistic regression [6]. As

BAs, we used ε-greedy (ε = 0, 0.1, 0.2, and 0.3) and UCB

(Upper Confidence Bound). We compared the CPDP

performance of the following approaches:

 Baseline approach: Perform the test only with the

ordinal BA method

 Retest approach: Perform not only the test but also

retest with the re-prediction method

 Multiple retests approach: Perform the test once and

retest twice with the re-prediction method

Evaluation criteria: We used AUC to evaluate the

performance of CPDP. The performance of the BA method

and our approach could be affected by the order of tested

modules. Therefore, we randomly changed the order of

modules, calculated the AUC 40 times, and computed the

average AUC. Following Krishna et al. [7], we set the

number of repetitions to 40. Note that when calculating the

AUC of the retest (and multiple retests) approach, although

the proposed methods updated some non-defective

predictions (e.g., t75 and t19), defective predictions were not

updated (e.g., t38).

We also used the number of defects found by the

prediction (i.e., the number of true positives) to evaluate the

performance of each approach. This is because when the

number increases, defects that are overlooked during the

testing phase can be suppressed but removed later (see

Section 3). Note that even if the number of true positives

(i.e., found defects) increases, AUC cannot be improved

when the number of false negatives also increases. Therefore,

we consider both AUC and the number of found defects.

For the evaluation, we defined RDIFF (relative

difference) [6] and DIFF (difference) as follows:

����� � �� � 	
 �
�������� ��� �

�������� ��� �
� � � ��	 �

���� � �� � 	
 � ���������� ��� � � � ���������� ��� �� � � 	 �

In the equations, the criterion of α denotes the number of

found defects by approach α, for instance. For instance, the

number of found defects by the baseline approach is 50, and

that by the retest one is 55, RDIFF(baseline, retest) is 0.1

(i.e., 10%). Positive values of DIFF(α, β) and RDIFF(α, β)

denote that the approach β improves the performance.

To check the statistical difference in the criteria between

the approaches, we applied the Wilcoxon signed-rank test in

the analysis.

Research questions: To clarify the purpose of the

evaluation, we set the following research questions:

 RQ1: Is the retest approach more effective than the

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

baseline approach?

 RQ2: To what extent is the effect of the multiple retests

approach compared to the retest approach?

To answer RQ1, we calculated the differences in AUC

between the baseline and retest approaches. Similarly, to

answer RQ2, we calculated the differences between the

retest and multiple retests approaches.

Analysis related to RQ1: Table 1 shows the

performance of each approach. As shown in the table, B, R,

and MR denote the baseline, retest, and multiple retests

approaches. The left side of the table shows the DIFF and

RDIFF of the AUC of each approach. Values in parenthesis

denote p-values by the Wilcoxon signed-rank test. Light-

gray cells mean the p-value is smaller than 0.1, and gray

cells with boldface the p-value is smaller than 0.05. Table 2

shows the AUC and the number of defects of the baseline.

In the table, Proj. means the number of projects used as

learning datasets.

All values of DIFF(B, R) and DIFF(B, MR) of AUC

were positive, and the average AUC between the baseline

and our approaches was statistically different at 0.05 level,

except for when 16 projects were used and the multiple

retests approach was applied (see the bottom rows of Table

1). The minimum value of average RDIFF(B, R) and

RDIFF(B, MR) of AUC was 1.1%, and the maximum one

was 2.7%. In the work of Kondo et al. [6], the average

RDIFF of AUC was 1.6% when the best feature reduction

technique was applied to defect prediction models such as

logistic regression. Compared with the study [6], average

RDIFF of AUC on our approaches is not very small.

While AUC on each type of BA, such as ε = 0, was not

always statistically different. For instance, when 16 projects

were used, and the type of BA was ε = 0, AUC was not

statistically different between the baseline and our

approaches.

The right side of Table 1 shows the DIFF(B, R) and

DIFF(B, MR) of found defects between the baseline and our

approaches. The differences were statistically significant at

the 0.05 level in all cases, and the average RDIFF(B, R) and

RDIFF(B, MR) of found defects was 17.4% at the minimum

(see the bottom rows of Table 1). That is, our approaches

significantly improved the number of found defects without

degradation of AUC.

Therefore, the retest and the multiple retests approach

performed better than the baseline. To answer RQ1, we

found that the retest and multiple retests approaches are

more effective than the baseline ones.

Analysis related to RQ2: On the left side of Table 1,

most DIFF(R, MR) of AUC were positive when 32 projects

were used as learning data. In contrast, many were negative

when 8 and 16 projects were used, and the degradations were

significantly significant at 0.05 in many cases.

On the right side of Table 1, many of the DIFF(R, MR)

of found defects were more than zero, and the differences

between the retest and multiple retests approaches were

statistically significant at 0.05 level in many cases. The

Table 1. Performance of each approach

 (a) 32 projects used as learning data

Type

AUC Number of found defects

DIFF

(B, R)

DIFF

(B, MR)

DIFF

(R, MR)

RDIFF

(B, R)

RDIFF

(B, MR)

RDIFF

(R, MR)

DIFF

(B, R)

DIFF

(B, MR)

DIFF

(R, MR)

RDIFF

(B, R)

RDIFF

(B, MR)

RDIFF

(R, MR)

ε = 0 0.014 (0.00) 0.016 (0.00) 0.002 (0.96) 2.4% 2.6% 0.3% 1.3 (0.00) 1.5 (0.00) 0.2 (0.07) 25.3% 27.3% 1.9%

ε = 0.1 0.023 (0.00) 0.030 (0.00) 0.007 (0.41) 3.8% 5.0% 1.1% 3.1 (0.00) 5.4 (0.00) 2.3 (0.00) 46.8% 103.1% 56.3%

ε = 0.2 0.022 (0.10) 0.023 (0.11) 0.001 (0.60) 3.5% 3.8% 0.2% 4.2 (0.00) 6.4 (0.00) 2.2 (0.00) 87.2% 131.0% 43.8%

ε = 0.3 0.011 (0.38) 0.001 (0.71) -0.010 (0.00) 1.8% 0.2% -1.5% 3.6 (0.00) 4.8 (0.00) 1.2 (0.00) 35.1% 47.2% 12.1%

UCB 0.010 (0.06) 0.012 (0.04) 0.002 (0.91) 1.7% 2.1% 0.3% 1.4 (0.00) 1.8 (0.00) 0.4 (0.01) 33.1% 42.2% 9.1%

Average 0.016 (0.00) 0.017 (0.00) 0.001 (0.04) 2.6% 2.7% 0.1% 2.7 (0.00) 4.0 (0.00) 1.2 (0.00) 45.5% 70.1% 24.7%

 (b) 16 projects used as learning data

Type

AUC Number of found defects

DIFF

(B, R)

DIFF

(B, MR)

DIFF

(R, MR)

RDIFF

(B, R)

RDIFF

(B, MR)

RDIFF

(R, MR)

DIFF

(B, R)

DIFF

(B, MR)

DIFF

(R, MR)

RDIFF

(B, R)

RDIFF

(B, MR)

RDIFF

(R, MR)

ε = 0 0.007 (0.65) 0.005 (0.83) -0.002 (0.17) 1.1% 0.8% -0.3% 1.0 (0.00) 1.1 (0.00) 0.1 (0.18) 13.2% 14.2% 1.0%

ε = 0.1 0.018 (0.15) 0.013 (0.97) -0.004 (0.05) 2.8% 2.1% -0.7% 3.0 (0.00) 4.0 (0.00) 1.0 (0.00) 37.8% 51.1% 13.2%

ε = 0.2 0.013 (0.21) 0.006 (0.80) -0.007 (0.02) 2.0% 0.9% -1.1% 3.7 (0.00) 5.4 (0.00) 1.7 (0.00) 41.9% 63.7% 21.8%

ε = 0.3 0.008 (0.29) 0.002 (0.95) -0.007 (0.03) 1.3% 0.3% -1.0% 3.7 (0.00) 4.9 (0.00) 1.2 (0.00) 35.3% 47.8% 12.5%

UCB 0.011 (0.01) 0.010 (0.01) 0.000 (0.49) 1.7% 1.6% 0.0% 1.1 (0.00) 1.1 (0.00) 0.0 (0.32) 12.4% 12.6% 0.2%

Average 0.011 (0.00) 0.007 (0.39) -0.004 (0.00) 1.8% 1.1% -0.6% 2.5 (0.00) 3.3 (0.00) 0.8 (0.00) 28.1% 37.9% 9.7%

 (c) 8 projects used as learning data

Type

AUC Number of found defects

DIFF

(B, R)

DIFF

(B, MR)

DIFF

(R, MR)

RDIFF

(B, R)

RDIFF

(B, MR)

RDIFF

(R, MR)

DIFF

(B, R)

DIFF

(B, MR)

DIFF

(R, MR)

RDIFF

(B, R)

RDIFF

(B, MR)

RDIFF

(R, MR)

ε = 0 0.002 (0.09) 0.002 (0.14) 0.000 (0.10) 0.4% 0.3% 0.0% 0.4 (0.00) 0.4 (0.00) 0.0 (1.00) 2.9% 2.9% 0.0%

ε = 0.1 0.005 (0.34) 0.021 (0.00) 0.016 (0.02) 0.7% 3.3% 2.5% 1.0 (0.00) 2.6 (0.00) 1.7 (0.00) 13.5% 47.0% 33.5%

ε = 0.2 0.019 (0.00) 0.022 (0.02) 0.003 (0.62) 3.0% 3.5% 0.4% 2.9 (0.00) 4.0 (0.00) 1.1 (0.00) 41.6% 62.3% 20.7%

ε = 0.3 0.012 (0.10) 0.008 (0.33) -0.004 (0.03) 1.9% 1.2% -0.7% 2.4 (0.00) 2.9 (0.00) 0.6 (0.00) 24.8% 30.0% 5.2%

UCB 0.004 (0.07) 0.003 (0.15) -0.001 (0.03) 0.6% 0.5% -0.1% 0.5 (0.00) 0.5 (0.00) 0.0 (1.00) 4.1% 4.1% 0.0%

Average 0.008 (0.00) 0.011 (0.00) 0.003 (0.75) 1.3% 1.8% 0.4% 1.4 (0.00) 2.1 (0.00) 0.7 (0.00) 17.4% 29.3% 11.9%

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

5

average RDIFF(R, MR) in the found defects was 9.7% at the

minimum. However, as explained above, AUC was

degraded by the multiple retests approach when 8 and 16

projects were used. Hence, applying the multiple retests

approach is recommended only when many projects are used

as learning data. For RQ2, the effect of the multiple retests

approach was smaller than that of the retest approach,

especially when many projects are not used as learning data.

The results suggested that our approach suppressed

defect overlooking without degradation of AUC. However,

as explained in Section 3, our approach may increase the

retest effort.

5. Conclusion

In CPDP, it is challenging to select suitable projects to use

for model training. In prior research, Bandit Algorithm (BA)

based methods have been used to select projects as learning

data. However, in the early stage of software testing, BA can

lead to the selection of unsuitable models. The model could

predict defective modules as “non-defective”, leading to

defects overlooking. We proposed a retest based on defect

re-prediction to lessen the probability of such overlooking.

Our proposed approach is promising because it can have a

wide range of applications and is not limited to CPDP.

In the experiment, we evaluated the performance of two

types of our approach, the retest approach and the multiple

retests approach, compared with the baseline approach,

which performs tests only with the ordinal BA method. As

evaluation criteria, we used AUC and the number of found

defects. As a result, our approach was more effective than

the baseline approach. Additionally, the effect of the

multiple retests approach was smaller than the retest

approach. Although our approach may increase the retesting

effort, it is expected to lessen the probability of defect

overlooking. In future work, we will apply our approach to

other combinations, such as CVDP and online learning

methods.

Acknowledgments

This research is partially supported by the Japan Society for

the Promotion of Science [Grants-in-Aid for Scientific

Research (C) (No.21K11840).

References

[1] A. Abdurazik and J. Offutt, “Using Coupling-Based Weights for

the Class Integration and Test Order Problem,” The Computer

Journal, vol.52, no.5, pp.557-570, 2009.

[2] T. Asano, M. Tsunoda, K. Toda, A. Tahir, K. Bennin, K. Nakasai,

A. Monden, and K. Matsumoto, “Using Bandit Algorithms for

Project Selection in Cross-Project Defect Prediction,” Proc. of

International Conference on Software Maintenance and Evolution

(ICSME), pp.649-653, 2021.

[3] B. Boehm, and V. Basili, "Software Defect Reduction Top 10 List,"

IEEE Computer, vol.34, no.1, pp.135–137, 2001.

[4] S. Hosseini, B. Turhan and D. Gunarathna, “A Systematic

Literature Review and Meta-Analysis on Cross Project Defect

Prediction,” IEEE Transactions on Software Engineering, vol.45,

no.2, pp.111-147, 2019.

[5] Information-technology Promotion Agency (IPA), Japan, The

2018-2019 White Paper on Software Development Projects, IPA,

2018 (in Japanese).

[6] M. Kondo, C. Bezemer, Y. Kamei, A. Hassan, and O. Mizuno,

“The impact of feature reduction techniques on defect prediction

models,” Empirical Software Engineering, vol.24, no.4, pp.1925-

1963, 2019.

[7] R. Krishna, T. Menzies and W. Fu, “Too much automation? The

bellwether effect and its implications for transfer learning,” Ptoc.

Of International Conference on Automated Software Engineering

(ASE), pp.122-131, 2016.

[8] T. Kuramoto, Y. Kamei, A. Monden, and K. Matsumoto, “Fault-

prone Module Prediction Across Software Development Projects -

Lessons Learned from 18 Projects -,” IEICE Transactions on

Information and Systems, vol.J95-D, No.3, pp.425-436, 2012 (in

Japanese).

[9] S. Mahfuz, Software Quality Assurance - Integrating Testing,

Security, and Audit, CRC Press, 2016.

[10] M. Tsunoda, A. Monden, K. Toda, A. Tahir, K. Bennin, K. Nakasai,

M. Nagura, and K. Matsumoto, “Using Bandit Algorithms for

Selecting Feature Reduction Techniques in Software Defect

Prediction,” Proc. of Mining Software Repositories Conference

(MSR), pp.670-681, 2022.

[11] B. Turhan, T. Menzies, A. Bener, and J. Stefano, “On the relative

value of cross-company and within-company data for defect

prediction,” Empirical Software Engineering, vol.14, no.5,

pp.540-578, 2009.

[12] T. Zimmermann and N. Nagappan, “Predicting defects using

network analysis on dependency graphs,” Proc. of International

Conference on Software Engineering (ICSE), pp.531-540, 2008.

Table 2. Baseline performance of each approach

Type
AUC Number of found defects

32 Proj. 16 Proj. 8 Proj. 32 Proj. 16 Proj. 8 Proj.

ε = 0 0.599 0.616 0.632 8.3 9.9 10.4

ε = 0.1 0.599 0.629 0.630 9.7 11.2 10.7

ε = 0.2 0.612 0.628 0.627 11.1 12.2 10.8

ε = 0.3 0.623 0.632 0.647 12.8 13.1 12.1

UCB 0.604 0.629 0.627 9.0 10.5 10.2

Average 0.607 0.627 0.633 10.2 11.4 10.8

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

