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Video Watermarking Method Based on 3D U-Net Robust Against
Re-shooting
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SUMMARY In recent years, digital signage has become popular as a
means of information dissemination to the general public. However, unlike
advertisements displayed on PCs or smartphones, it is impossible to directly
acquire information displayed on such signages even if the content is inter-
esting. Mizushima et al. proposed a video watermarking method that is
robust against re-shooting so that the watermark can be extracted from wa-
termarked videos displayed on digital signage. Conventional methods have
the problem of limited information capacity. In recent years, watermarking
methods based on deep learning have attracted attention for embedding large
watermarks. In this paper, we implemented a video electronic watermark
based on 3D U-Net, which makes it possible to embed larger watermarks
than existing methods. In addition, the proposed method was able to extract
the watermark from the re-shot video, and the shortest average processing
time is 1.85 seconds to extract the correct watermark.
key words: Digital signage, 3D U-Net, Video watermarking, Re-shooting

1. Introduction

In recent years, digital signage, a display type information
dissemination media, has become increasingly popular and
can be seen in train stations and on the streets. Since digital
signage can transmit information to the masses, it easily at-
tracts users’ interest. However, users cannot directly obtain
detailed information even if they are interested in the con-
tent. Therefore, a method to embed watermarks in videos
to get information is being considered. Digital watermark-
ing is a technology for embedding additional information in
multimedia content such as images, videos, and music by
making changes too small to be perceived by humans[1].
The embedded information is called a watermark, and a
video with an embedded watermark is called a watermarked
video. It is convenient for users that they can extract water-
marks from watermarked videos on signage by re-shooting
them by smartphone. As a watermark, the shortened URL
of a website that provides detailed information on the video
is useful because users can obtain detailed information from
the watermarked video. For example, a shortened URL of
a travel reservation website could be embedded as a water-
mark in a travel video advertisement. Considering that the
response time for a user is reported to be 2 to 8 seconds[2],
extracting the watermark should be fast. We assume that
there is no malicious attack on the watermarked video since
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there is no advantage for the party displaying the video and
the party wishing to obtain detailed information.

Mizushima et al. proposed a method to extract a wa-
termark from frames re-shot by a smartphone by estimating
the watermarked area using traces of the embedded water-
mark[3]. This method can embed a 22 bits watermark and
work in real-time on smartphones. However, it has the dis-
advantage of degrading the image quality of watermarked
videos to obtain a reliable watermark. Other problems are
the perception of block noises in watermarked videos and
the low capacity. The block-based embedding process is the
cause of them. Independent embedding for each block makes
perceiving boundaries of them and the tradeoff between the
amount of embedding bits, that is the number of blocks, and
the robustness which is related to the size of blocks. As
an alternative method, Hui et al. proposed a watermarking
method for camcorder recording that uses the similarity be-
tween adjacent video frames to embed a watermark. This
method is robust against geometric and frame rate changes,
especially for camcorder recordings[4].

In recent years, watermarking methods based on deep
learning have attracted attention for embedding large water-
marks. Tancik et al. proposed an image watermark called
StegaStamp[5]. StegaStamp is robust against re-shooting for
still images. It uses deep learning to embed watermarks,
detect watermark areas from re-shot images, and extract wa-
termarks. It used U-Net[6] to embed the watermark. The
U-Net is trained to embed a watermark in the image so as to
be robust against re-shooting. However, since the video is
composed of sequential frames, the 2D U-Net model cannot
use the temporal features.

In this study, we use 3D U-Net, the 3D extension of
U-Net, to use temporal features of the video as a model for
watermarking. In this paper, we describe related work in
Sect. 2, embedding a watermark in video and extracting the
watermark using deep learning in Sect. 3, the performance of
the proposed method in extracting watermarks from re-shot
videos in Sect. 4, and conclude in Sect. 5.

2. Related Work

2.1 Video watermarking methods robust against re-
shooting

Mizushima et al. proposed a method to extract watermarks
from watermarked videos by extracting watermarks from
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accumulated difference frames to improve image quality[3].
Mizushima et al.’s method is implemented on a smartphone
and correctly extracts the watermark within one second in
most cases. It is also stated to be robust against pixel changes
due to re-shooting by using different frames. However, the
watermarks used in the experiments were 16 bits and 22 bits
in length, and watermarks of longer lengths have not been
tested.

Hui et al. proposed a watermarking scheme for cam-
corder recording that uses the similarity between adjacent
video frames to embed a watermark. A feature-based po-
sitioning algorithm is proposed to determine the embed-
ding region and embedding strength so that the watermark is
robust against geometric transformations during camcorder
recording. For extracting the watermark, a synchronization
algorithm and a cross-validation algorithm are used, and a
local matching algorithm is proposed to reduce the difference
between neighboring frames of the watermark. Experimen-
tal results show that the proposed algorithm is robust against
geometric transformations, compression, etc., and is partic-
ularly robust against camcorder recordings. The weak point
of Hui et al.’s method is that it requires a few frames to em-
bed only 1-bit watermark. They said in the paper that their
scheme is not suitable for short videos, because for videos
of tens of seconds, it may not have enough frames to ensure
the watermark embedding.

2.2 Video watermarking method using deep learning

Weng et al. have proposed a method of embedding video
as a watermark in a video, focusing on the temporal redun-
dancy of video[7]. Since consecutive frames of a video are
often similar to each other, the difference between frames is
considered to be small. Therefore, Weng et al. proposed
a method to embed reference frames and differences alter-
nately. The reference frame is the frame on which the differ-
ences are calculated. When extracting the embedded video,
the reference frame and the difference are used to compute
the frames of the embedded video. This method can reduce
degradation compared to embedding frames directly in each
frame. The weak point of Weng et al.’s method is low ro-
bustness against video processing. They investigated only
the robustness against MP4 compression.

2.3 Image watermarking method based on deep learning
robust against re-shooting

Tancik et al. use deep learning to embed a watermark in an
image, detect the watermarked area from a re-shot image, and
extract the watermark[5]. The system used for embedding
and extracting watermarks is called StegaStamp. It is capable
of embedding a string of text into an image and extracting
the watermark from a printed or displayed image that has
been re-shot. First, the encoder is trained to embed the
message into the image while minimizing the perceptual
differences between the input image and the watermarked
image. Here, Tancik et al. employ U-Net[6] as the deep
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Fig. 2 Detecting a watermarked area in a re-shot watermarked video and
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learning model, which receives four input channels, a 400 ×
400 red, green, and blue channels of an input image, and
one channel for the message, and produces the watermarked
image. The decoder is a network trained to recover the
message from the watermarked image. The decoder also
uses a spatial transformation network [8] to enable extraction
from geometrically transformed watermarked images. Our
research is similar to Tancik et al.’s research in that it uses
a deep learning model robust against re-shooting, but the
difference is that the target of this research is a video, not an
image.

3. Proposed Method

Figure 1 shows the flow of embedding a watermark. Figure 2
shows the flow from watermarked area detection in a re-shot
watermarked video to watermark extraction. In this section,
we explain each of the steps in Fig. 1 and Fig. 2. Here, we
have not implemented automatic detection of watermarked
video areas yet, so the detection is done manually.

3.1 Encoder for embedding a watermark and decoder for
extracting the watermark

The proposed method uses a 3D U-Net[9] with four con-
volutional layers and four deconvolutional layers. First, the
following preprocessing is performed on the original video
and watermark. The 𝑁𝒄-bit binary sequence 𝒄 is processed
through a fully-connected layer to form a 1×15×20×3 ten-
sors, where the binary sequence 𝒄 is the target of embedding
(hereinafter called embedding sequence). Then 𝒄 is upsam-
pled to produce an 8 × 240 × 320 × 3 tensors. It has been
reported by Tancik et al. that applying similar preprocessing
to messages aids convergence. The 8× 240× 320× 6 tensor,
which is the combination of preprocessed 𝒄 and the original
8-frames sequence of size 8×240×320×3, is input to the 3D
U-Net to output an 8× 240× 320× 3 watermarked frame se-
quence. Here, the size of the frame sequences 8×240×320×3
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Fig. 3 Encoder for embedding a watermark and decoder for extracting
the watermark training.

means [the number of frames] × [height] × [width] × [the
number of color channels].

Next, a 3D CNN is used as the decoder for extract-
ing the watermark, taking a 240 × 320 × 3 pixels video as
input, and outputting a 𝑁𝒄-bit binary sequence 𝒄′ via 7 con-
volutional layers followed by a fully-connected layer. The
cross entropy error between the extracted binary sequence
𝒄′ and the correct embedding sequence 𝒄 is the watermark
loss. Figure 3 shows the training flow of the encoder for
embedding a watermark and the decoder for extracting the
watermark. We use a discriminator that predicts whether a
message is encoded in the input video or not to obtain a critic
loss. Lower critic loss means higher image quality of an in-
put video. The network consists of 5 convolutional layers.
For training the discriminator, we use Wasserstein loss[10].
As the losses related to the degradation of the image quality
of the watermarked video (hereinafter called video loss), we
employ the perceptual differences between the original and
the watermarked video, that is, the mean squared error of
RGB, the mean squared error of YUV, the LPIPS perceptual
loss[11], and the critic loss. All these losses are used to train
the encoder for embedding a watermark and the decoder
for extracting the watermark simultaneously. The weight of
the watermark loss is fixed at 1.0, and the weight of others
is linearly increased with each training epoch. Hereafter,
the encoder for watermark embedding and the decoder for
watermark extraction are referred to as the embedder and
extractor, respectively.

3.2 Noise for the training of the embedder and extractor

Noise by re-shooting includes white noise caused by re-
flections on a signage and camera systems. Hue, lumi-
nance, and contrast shifts are employed to reproduce the
white noise as follows: First, we apply hue shift by adding
a random color offset to each of the RGB channels sampled
uniformly from [−0.1, 0.1]. Next, we apply luminance and
contrast shifts based on affine histogram rescaling 𝑚𝑥 + 𝑏
with 𝑚 ∼ 𝑈 [0.5, 1.0] and 𝑏 ∼ 𝑈 [−0.3, 0.3]. Various cam-
era noises are possible, but a Gaussian noise model (standard
deviation𝜎 ∼ 𝑈 [0, 0.02]) is applied assuming standard non-
photon-starved imaging conditions as in Stegastamp.

Synchronization information

Watermark

23 frames

8 frames 8 frames

Fig. 4 Construction of embedding sequences in watermarked video.

3.3 Construction of embedding sequences

To extract a watermark from the re-shot video, it is necessary
to synchronize the start and end points of the 8 frames of wa-
termarked video. The embedding sequence of 𝑁𝒄-bits of all
zeros is used as the synchronization information. Figure 4
shows the composition of the embedding sequence in a wa-
termarked video. First, 𝑁𝒄-bit synchronization information
is embedded into the eight original frames for synchroniza-
tion. Then, 𝑁𝒄-bit code word of watermark is embedded into
the following eight original frames, where the code word of
watermark is obtained by BCH encoding of 𝑁W-bit water-
mark. Thus, the synchronization information and the code
word of watermark are embedded alternately. As shown in
Fig. 4, any 23 frames of re-shot video always contain frame
sequences with both the synchronization information and the
watermark. Synchronization is performed with respect to the
frame sequence from which the highest number of zeros are
extracted by extracting eight frames at a time in a sliding
window from the 23 frames.

3.4 Embedding watermark

The watermark is embedded using the embedder described
in Sect. 3.1. Eight frames of an original video and 𝑁𝒄-bit
embedding sequence described in Sect. 3.3 is input to the
embedder. This embedding process is repeated until the end
of the original video, selecting eight frames of the original
video without overlapping.

3.5 Extracting watermark

The extractor described in Sect. 3.1 is used to extract the
watermark. Figure 5 shows the flowchart of extracting the
watermark. The watermark extracting process consists of
the synchronization of watermarked frames and a reliability
check. First, successive 23 frames in a watermarked video
are extracted and used for synchronization. The eight frames
where a watermark was embedded can be found before or
after the frame sequence with the most zeros. The reliability
check is performed to confirm that the watermark is extracted
correctly. The reliability check is based on the number of
corrected error bits when BCH decoding the code word. The
extracted watermark is considered reliable if the number of
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Fig. 5 Flowchart of extracting the watermark.

corrected error bits is less than or equal to the error correc-
tion capability of the BCH code. Otherwise, the extracted
watermark is discarded, and then the process returns to the
first step in Fig. 5, i.e., the extraction of the 23 frames from
the re-shot video. The next 23 frames are extracted in such
a way that they do not overlap with frames that have already
been processed for extracting the watermark.

4. Experiment

4.1 Experimental conditions

In this study, we used the video dataset UCF101[12], which
is used in other video watermarking method research[13],
[14]. This dataset is classified into 101 classes of human
motion and consists of more than 13,000 files, totaling 27
hours of video. The frame size is all 240 × 320 pixels. The
dataset was divided into training and test videos at a ratio of
9:1 based on the number of files. Watermark embedding and
extracting were performed on a GPU. The used GPU was an
NVIDIA Corporation GP102 [TITAN Xp] with 128 GB of
memory.

4.2 Learning embedders and extractors

We trained the embedder and extractor using the training
video dataset described in Sect. 4.1. The length of the em-
bedding sequence 𝑁𝒄 was set to 100 bits, and the number
of training epochs was 100,000. In model training, 100 bits
binary random number sequence was used as the embedding
sequence. Eight original video frames were extracted from
the training video data set and trained with a batch size of
4, along with the binary random number sequence. The loss
used for training is the sum 𝐿 of the mean squared error of
RGB 𝐿R, the mean squared error of YUV 𝐿Y, the LPIPS
perceptual loss 𝐿L, the critic loss in Discriminator 𝐿D and
the watermark loss 𝐿W.

𝐿 = 𝜆R𝐿R + 𝜆Y𝐿Y + 𝜆L𝐿L + 𝜆D𝐿D + 𝜆W𝐿W (1)

where 𝜆R, 𝜆Y, 𝜆L, 𝜆D, and 𝜆W are the weight of the mean
squared error of RGB, the mean squared error of YUV, the
LPIPS perceptual loss, the critic loss in the discriminator, and

the watermark loss, respectively. Here, in the calculation of
the mean squared error of YUV 𝐿Y, the squared errors of
UV components were multiplied by 100. The watermark
loss weight 𝜆W is fixed at 1.0. For the first 10,000 training
epochs, the weights other than the watermark loss 𝜆W were
set to 0 to improve the accuracy of extracting the watermark.
After 10,000 epochs, the weights other than the watermark
loss were linearly increased with each training epoch. The
function to determine each video loss weight was based on
the current number of training 𝑛 as the following equations:

𝜆R = 𝜆Y = min
(
1.5 × 𝑛

20000
, 1.5

)
(2)

𝜆L = min
(
0.3 × 𝑛

20000
, 0.3

)
(3)

𝜆D = min
(
0.5 × 𝑛

20000
, 0.5

)
(4)

The number of training epochs using only watermark
loss (that is, 10,000 epochs in this experiment) was set as the
number of times so that the accuracy of extracting the wa-
termark for validation data in the training phase is achieved
to be at least 95%, where the accuracy is concordance rate
between the original embedding sequence and the extracted
embedding sequence. In this experiment, we created three
models with different losses and noise for training. The
first model was trained with only the mean squared error
of RGB and without adding noise for training (hereinafter
called “RGB loss noiseless model”). The second model was
trained with all video loss and without adding noise for train-
ing (hereinafter called “All loss noiseless model”). The third
model was trained with all video loss and with adding noise
for training (hereinafter called “All loss noisy model”). In
the experiment, “RGB loss noiseless model” and “All loss
noiseless model” are compared for investigating the effect of
training loss, while “All loss noiseless model” and “All loss
noisy model” are compared for investigating the effect of the
noise for the training of the embedder and extractor.

In addition, a V-Net [15] based model was prepared
for the comparison. Since the watermark could not be ex-
tracted in the as-is V-Net implementation, we used a model
trained without Element Wise Sum, using only the RGB
mean squared error, and without adding noise (hereafter
called “V-Net RGB noiseless model”). The watermarked
videos created with this model had a watermark extraction
rate of more than 90% without re-shooting.

4.3 Experiments on embedding

One hundred videos were randomly selected from the test
dataset described in Sect. 4.1 for embedding watermarks
into them in this experiment. The selected videos were total
615 seconds in 320 × 240 pixels at 30 fps. The average
duration of the 100 selected videos was 6.3 seconds, with a
standard deviation of fewer than 3 seconds. The BCH coding
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Fig. 6 Setting for re-shooting.

Fig. 7 Re-shot video.

parameters used for encoding the watermark consisted of 56
data bits and 40 checksum bits, and the remaining 4 bits
were filled with zeros to achieve the embedding sequence of
length 100 bits. The error correction capability is 5 bits.

4.4 Image quality evaluation of watermarked video

This section describes the image quality of the watermarked
videos in Sect. 4.3. Figure 8 shows the original frame and
the watermarked frames for “RGB loss noiseless model”,
“All loss noiseless model”, and “All loss noisy model”,
and “V-Net RGB loss noiseless model”. Each watermarked
video was shown on the signage for the qualitative evalu-
ation. Comparing the watermarked videos of “RGB loss
noiseless model” and “All loss noiseless model”, the water-
marked video of “RGB loss noiseless model” was a flicker
throughout the watermarked video than that of “All loss
noiseless model”. Comparing the watermarked videos of
“RGB loss noiseless model” and “V-Net RGB loss noiseless

Table 1 The average PSNR and SSIM for each model.
Model name avg. PSNR [dB] avg. SSIM

RGB loss noiseless model 37.4 0.961
All loss noiseless model 40.8 0.980

All loss noisy model 39.5 0.976
V-Net RGB noiseless model 40.4 0.974

Fig. 8 Original frame (top left) and watermarked video frames using “V-
Net RGB loss noiseless model” (top right), “RGB loss noiseless model”
(bottom left), “All loss noiseless model” (bottom middle), “All loss noisy
model” (bottom right).

Table 2 Results of reliability check and correct watermark extraction in
802 synchronizations when re-shooting.

Model name Reliability check Correct watermark
RGB loss noiseless model 563 563
All loss noiseless model 485 483

All loss noisy model 611 611
V-Net RGB noiseless model 420 420

model”, “V-Net RGB loss noiseless model” showed more
severe flicker noise than “RGB loss noiseless model”. This
flicker noise is caused by the reason that some parts of the
8 frames have more watermarks and some less. Flicker
noise in “RGB loss noiseless model” and “V-Net RGB loss
noiseless model” is a reddish or greenish noise that appears
over the entire frame. Flicker noise in “All loss noiseless
model” and “All loss noisy model” is like a mild desatu-
ration, but in addition, “All loss noisy model” also shows
noticeable black flicker noise only in the frames with mostly
white backgrounds, as shown in Fig. 8. Table 1 shows the
average PSNR and SSIM, where they are the objective im-
age quality evaluation indices. Among the three 3D U-Net
models, the average PSNR and SSIM are higher using all
training losses than using only the RGB loss. Comparing
the average PSNR and SSIM of“RGB loss noiseless model”
and “V-Net RGB loss noiseless model”, the score of “V-Net
RGB loss noiseless model” was higher than that of “RGB
loss noiseless model”, however this is the opposite of the
qualitative evaluation. In the V-Net model, one of the 8
frames was mainly changed for embedding, while in the 3D
U-Net models, 8 frames were changed to a similar extent.
Therefore, the average PSNR and SSIM of the V-Net RGB
noiseless model were high though the watermarked videos
include severe flicker noise.
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Table 3 Average processing time for each model when re-shooting. (a)
Average interval between correct watermark extractions [sec]. (b) Average
processing time from synchronization to reliability check[sec].

Model name (a) (b)
RGB loss noiseless model 1.09 0.76
All loss noiseless model 1.27 0.91

All loss noisy model 1.01 0.91
V-Net RGB noiseless model 1.46 0.76

4.5 Experiments on extracting against re-shooting

The watermark extraction experiments were conducted on
the re-shot videos of the watermarked videos of the selected
videos described in Sect. 4.3. Figure 6 shows the setting
for re-shooting the watermarked video. Since the proposed
method does not implement automatic detection of a water-
marked area in the re-shot video, the video was shot with a
tripod so as to fix the coordinates of the watermarked area.
The watermarked video was played on 70 inches signage
(SHARP PH-H701) with a resolution of 3840 × 1920 pixels
and was re-shot from a distance of 200 centimeters for about
10 minutes with an iPhone13 Pro fixed on a tripod. Figure 7
is an example of a frame of the re-shot video. The format of
the video image stored in the iPhone 13 Pro after re-shooting
is mov format with 1920 × 1080 pixels at 30 fps. In this
experiment, the area detection of the watermarked video in
the re-shot video was done manually to define the four corner
points. The four corner points were (472, 139), (1455, 139),
(1453, 868), and (482, 878) in the first frame of the re-shot
video. They were projected to the image at coordinates (0,
0), (984, 0), (984, 738), and (0, 738). This projection is
applied to all frames.

Finally, the watermark is extracted from the clipped and
projected watermarked area in the re-shot video as described
in Sect. 3.5. The same experiments were conducted on wa-
termarked videos generated by the three models. Table 2
shows the number of times the reliability check was satis-
fied in 802 synchronizations (hereinafter called Reliability
check), and the number of times the correct watermark after
BCH error correction is extracted in 802 synchronizations
(hereinafter called Correct watermark). Comparing “RGB
loss noiseless model” and “All loss noiseless model”, Cor-
rect watermark on “RGB loss noiseless model” is larger than
that on “All loss noiseless model”. Meanwhile, the image
degradation of the watermarked video on “RGB loss noise-
less model” is more visible than that on “All loss noiseless
model”. Comparing “All loss noiseless model” and “All loss
noisy model”, both Reliability check and Correct watermark
on “All loss noisy model” is larger than those on “All loss
noiseless model”. This shows that adding noise during the
training of the embedder and extractor is effective to achieve
the robustness against re-shooting. Comparing “RGB loss
noiseless model” and “V-Net RGB loss noiseless model”,
Correct watermark on “RGB loss noiseless model” is larger
than that on “V-Net RGB loss noiseless model”. Of the 100
videos used in the experiment, 14 videos could not be ex-

tracted at all in “V-Net RGB loss noiseless model” but could
be extracted completely in “RGB loss noiseless model”, for
a total of 81 seconds. These videos included sports such as
gymnastics, volleyball, and ice skating, as well as videos of
musical instrument performances such as drums and sitar.
Some of these videos had a lot of movement, some were
small, some were from a fixed point, and some had a large
background movement as the camera followed the subject.
There were no common features, but there was an improve-
ment in performance in a variety of scenes. This shows that
3D U-Net models are more robust against re-shooting than
V-Net models.

Table 3 shows the average interval between correct wa-
termark extractions and the average processing time from the
synchronization to the reliability check against re-shooting
for each model. As shown in Tab. 3, in three 3D U-Net
models, RGB loss noiseless model can extract the correct
watermark most frequently, while All loss noiseless model
do least frequently. This shows that the three models have the
robustness against re-shooting not for specific frames but for
general frames although the effectivities are various. Com-
paring “RGB loss noiseless model” and “V-Net RGB loss
noiseless model”, Correct watermark on “RGB loss noise-
less model” can be obtained more frequently than “V-Net
RGB loss noiseless model”. We can find the average pro-
cessing time to obtain a correct watermark as the sum of the
average interval between correct watermark extractions and
the average processing time from synchronization to relia-
bility check. Thus the average processing time for correct
watermark extraction of “RGB loss noiseless model”, “All
loss noiseless model”, “All loss noisy model”, and “V-Net
RGB loss noiseless model” are 1.85, 2.18, 1.92, and 2.22,
respectively.

4.6 Experiments on extracting against re-shooting from
various angles

Watermarked videos were re-shot from 30 degrees on the
left and right sides to investigate the performance of the ro-
bustness against re-shooting from various angles. Table 4,
Tab. 5, and Tab. 6 show the results for re-shot videos from
30 degrees on the left side and right side. Comparing Tab. 4
with Tab. 2, Correct watermark on “V-Net RGB loss noise-
less model” decreased with angle, while Correct watermark
on “RGB loss noiseless model” did not decrease. This shows
that 3D U-Net model is more robust than V-Net model against
re-shooting from various angles. The increase in some Cor-
rect watermarks seems to have occurred due to differences in
the reflections of the background on the signage. Comparing
Tab. 5 and Tab. 6, with Tab. 3, average processing time from
synchronization to reliability check is related to the type of
loss, not to the angles. Comparing “All loss noiseless model”
and “All loss noisy model”, adding noise during the training
of the embedder and extractor is effective against perspective
projection with re-shooting. It is noteworthy that “All loss
noiseless model” can extract the correct watermark although
the average interval of correct watermark extraction is rel-



TSUBOYAMA et al.: VIDEO WATERMARKING METHOD BASED ON 3D U-NET ROBUST AGAINST RE-SHOOTING
7

atively long. Therefore, “All loss noiseless model” is one
candidate when the image quality is important.

4.7 Performance evaluation of watermarked video using
StegaStamp

We compared the performance against re-shooting of the
proposed method with that of StegaStamp. We embedded
a watermark at each frame of the video using the trained
model used in StegaStamp. The video and watermark were
the same as in Sect. 4.3. The detection is also done man-
ually. Moreover, the synchronization is not necessary and
skipped because all frames are individually watermarked.
Based on the difference between the proposed method and
StegaStamp in our experiment, we can discuss the advan-
tage of using temporal features. Since StegaStamp requires
a 400 × 400 pixels image input, a 320 × 240 pixels frame
was enlarged to a 400 × 300 pixels frame, and margins with
a pixels value of 127 were added to the top and bottom. We
extracted the watermark after the re-shot video under the
same conditions as in Sect. 4.3. The number of all frames is
18446, and 17564 frames satisfied the reliability check. The
correct watermark was extracted from 17560 frames. The
average processing time to extract the correct watermark
was 0.073 seconds which is the sum of the average interval
of correct watermark extractions 0.035 [sec] and the aver-
age processing time of extraction 0.038 [sec]. The results
confirm that the watermark can be extracted sufficiently by
applying StegaStamp to each frame of the video.

Next, we evaluated the image quality of the water-
marked videos using StegaStamp. The average PSNR and
SSIM were calculated to be 30.7 dB and 0.878, respectively.
Our method’s average PSNR and SSIM values were higher
than that of StegaStamp. In addition, comparing the PSNR
and SSIM for each frame of the “All loss noisy model” and
Stegastamp model, the PSNR and SSIM were higher for “All
loss noisy model” at 18128 and 18423 frames, respectively,
out of 18456 total frames. These results confirmed that
the PSNR and SSIM were higher by distributing the infor-
mation to be embedded over 8 frames using the temporal
feature of the video. Figure 9 is the original video frame,
the watermarked video frame using StegaStamp, and their
residual frames. Figure 10 is residual frames using three
models for comparison with Fig. 9. Other residual frames
than “RGB loss noiseless model” have noise at the edges of
the object, while the residual frame of “RGB loss noiseless
model” has noise over the entire frame. This result shows
that “All loss noiseless model” and “All loss noisy model”
better use of temporal features and improved image quality
due to the watermark being embedded in the relatively mov-
ing areas between frames and less noise in the stationary
background. Also, this result shows that the cause for more
flicker noises in “RGB loss noiseless model” seems to be
noise over the entire frame. The watermarked video using
StegaStamp showed a smoky afterimage.

Fig. 9 Original frame (left), watermarked video frames using StegaStamp
(center), and residual frames between the original video and watermarked
video using StegaStamp (right).

Fig. 10 Residual frames between the original video (top left) and the
watermarked video using “RGB loss noiseless model” (top right), “All loss
noiseless model” (bottom left), “All loss noisy model” (bottom right).

5. Conclusion

A new video watermarking method using 3D U-Net is pro-
posed. The experimental results confirmed that the pro-
posed method is robust against re-shooting and capable of
embedding a watermark with 56 bits of information, which is
larger than existing methods. The Challenge of the proposed
method is to reduce flicker found by qualitative evaluation in
image quality evaluation. In this experiment, the detection
of watermarked areas from the re-shot video was done man-
ually, so automatic detection of watermarked areas is a future
issue. In addition, more practical experiments that consider
image blurring due to camera shake and pixel misalignment
from frame to frame are future issue. Another future chal-
lenge is to develop an application that runs the proposed
method on an actual smartphone and conduct experiments
on actual devices.

References

[1] J. Fridrich, Steganography in Digital Media, Cambridge University
Press, 2014.

[2] S.S. Krishnan and R.K. Sitaraman, “Video stream quality im-
pacts viewer behavior: inferring causality using quasi-experimental
designs,” IEEE/ACM Transactions on Networking, vol.21, no.6,
pp.2001–2014, 2013.

[3] M. IWATA, N. MIZUSHIMA, and K. KISE, “Practical watermarking



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 4 Results of reliability check and correct watermark extraction in 802 synchronizations when
re-shooting from 30 degrees on the left and right side.

Model name left side right side
Reliability check Correct watermark Reliability check Correct watermark

RGB loss noiseless model 594 592 628 628
All loss noiseless model 411 407 465 463

All loss noisy model 654 653 637 637
V-Net RGB noiseless model 249 247 367 365

Table 5 Average processing time for each model when re-shooting from
30 degrees on the left side. (a) Average interval between correct watermark
extractions [sec]. (b) Average processing time from synchronization to
reliability check[sec].

Model name (a) (b)
RGB loss noiseless model 1.04 0.79
All loss noiseless model 1.51 0.90

All loss noisy model 0.94 0.89
V-Net RGB noiseless model 2.49 0.79

Table 6 Average processing time for each model when re-shooting from
30 degrees on the right side. (a) Average interval between correct watermark
extractions [sec]. (b) Average processing time from synchronization to
reliability check[sec].

Model name (a) (b)
RGB loss noiseless model 0.98 0.79
All loss noiseless model 1.33 0.91

All loss noisy model 0.97 0.91
V-Net RGB noiseless model 1.68 0.80

method estimating watermarked region from recaptured videos on
smartphone,” IEICE TRANS. INF. & SYST., vol.100, no.1, Jan.
2017.

[4] C. Hui, S. Liu, W. Shi, F. Jiang, and D. Zhao, “Spatio-temporal
context based adaptive camcorder recording watermarking,” ACM
Transactions on Multimedia Computing, Communications and Ap-
plications, vol.18, no.3s, pp.1–25, 2022.

[5] M. Tancik, B. Mildenhall, and R. Ng, “Stegastamp: Invisible hy-
perlinks in physical photographs,” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” International Conference
on Medical image computing and computer-assisted intervention,
pp.234–241, Springer, 2015.

[7] X. Weng, Y. Li, L. Chi, and Y. Mu, “High-capacity convolutional
video steganography with temporal residual modeling,” Proceedings
of the 2019 on International Conference on Multimedia Retrieval,
pp.87–95, 2019.

[8] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial trans-
former networks,” Advances in neural information processing sys-
tems, vol.28, pp.2017–2025, 2015.
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