
DOI:10.1587/transinf.2024PAP0006

Publicized:2024/08/07

This advance publication article will be replaced by
the finalized version after proofreading.

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

PAPER Special Section Manuscript for IEICE (PA2024)

Imperceptible Trojan Attacks to the Graph-based Big Data Pro-
cessing in Smart Society

Jun ZHOU†a), Nonmember, and Masaaki KONDO†b), Member

SUMMARY Big data processing is a set of techniques or programming
models, which can be deployed on both the cloud servers or edge nodes, to
access large-scale data and extract useful information for supporting and
providing decisions. Meanwhile, several typical domains of human activity
in smart society, such as social networks, medical diagnosis, recommenda-
tion systems, transportation, and Internet of Things (IoT), often manage a
vast collection of entities with various relationships, which can be naturally
represented by the graph data structure. As one of the convincing solutions
to carry out analytics for big data, graph processing is especially applicable
for these application domains. However, either the intra-device or the inter-
device data processing in the edge-cloud architecture is truly prone to be
attacked by the malicious Trojans covertly embedded in the counterfeit pro-
cessing systems developed by some third-party vendors in numerous prac-
tical scenarios, leading to identity theft, misjudgment, privacy disclosure, and
so on. In this paper, for the first time to our knowledge, we specially build
a novel attack model for ubiquitous graph processing in detail, which also
has easy scalability for other applications in big data processing, and dis-
cuss some common existing mitigations accordingly. Multiple activation
mechanisms of Trojans designed in our attack model effectively make the
attacks imperceptible to users. Evaluations indicate that the proposed Tro-
jans are highly competitive in stealthiness with trivial extra latency.

Key words: Big data, graph processing, malicious attack, imperceptible
Trojan, mitigation scheme.

1. Introduction

Big data refers to very large, complex, and rapidly-growing
data that are difficult to manage and process using traditional
tools and techniques. In fact, about 2.5 trillion bytes of data
are created every day [1]. These data come from everywhere
in society, containing structured, semi-structured, and un-
structured data, like text, audio, video, images, sensor data,
etc. Big data processing involves the employment of special-
ized tools and technologies to store, manage, and analyze the
massive data, from which the meaningful and actionable in-
sights are extracted, to inform decision making, improve
business operations, and drive innovation in various fields
of society. Apache engines, such as Hadoop, Spark, Flink,
Storm, and Cassandra, are the representative open-source
systems for big data processing in addition to some commer-
cial ones, like IBM InfoSphere BigInsights, Microsoft Azure
HDInsight, Google Cloud Dataflow, and so on. [1].

In a smart society, people aim to utilize technology to
ease their access to services, where several typical domains
of human activity are involved, such as the social networks,
medical diagnosis, recommendation systems, internal threat
detection, transportation, Internet of Things (IoT), etc. These
application domains often deal with a vast collection of en-
tities with varieties of relationships, which can be naturally

represented by the graph data structure [2]. Graph analytics
is a relatively new area of analytics referring to the analyses
applied to graph-based big data, while the graph manage-
ment systems have been regarded as convincing solutions to
perform the graph analytics [3, 4]. In general, there are two
primary types of graph management systems having been
designed by both academia and industry, graph processing
system and graph database [4]. The former one mainly con-
sists of graph processing framework (GPF) and graph pro-
cessing library (GPL), which can also be broadly categorized
as the distributed system and the single-machine system [3].
The mentioned Apache engines were not originally devel-
oped for graph processing, but some of them have been ex-
tended to support graph processing, e.g., Hadoop Giraph and
Pegasus, Spark GraphX, and Flink Gelly [5].

Graph processing can be separately deployed on either
cloud or edge side according to practical application scenarios.
As an emerging trend of research for building smart society in
the past couple of years, the edge-cloud collaboration support-
ing the interaction between different devices with adequate or
constrained hardware resources for efficient graph processing
has been applied as well [6-8]. Basically, because the availa-
ble computational and storage resources on the edge devices
are normally restricted and insufficient, a relatively low-cost
solution of graph analytics is more applicable [9]. Thus, the
lightweight interactive graph management systems having de-
cent performances to support the handling of large graphs is a
real necessity for edge computing [10] in smart society, which
will be also taken into account in this paper.

With the proliferation of various inter-connected and In-
ternet-connected devices, the volume of data collected, stored,
and processed is increasing all the time. This also brings new
challenges in terms of information security, like unauthorized
access and data leakage/manipulation/loss as a result of the
malware, leading to privacy disclosure, identity theft, poor de-
cision making, etc. [11]. Security and privacy are critical con-
cerns in big data processing, and comprehensive approaches
are necessary to mitigate the risks and guarantee that sensitive
data is managed appropriately. Actually, there are several
representative categories of malware which are identified in
the context of big data processing, like Trojan, virus, worm,
ransomware, rootkit, spam, and spyware [11]. In comparison
with other types of malware, Trojans possess several “ad-
vantages” from the perspective of adversaries, such as the
stronger stealthiness for flexible and persistent attacks [11,
12]. Therefore, the Trojans obtain our primary concern here.
Usually, the Trojans can be divided into software Trojans and †The authors are with Keio University, Yokohama-shi, Kana-

gawa, 223-8522 Japan.
 E-mail: {edo, kondo}@acsl.ics.keio.ac.jp

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
2

hardware Trojans. Here, the former refers to a type of mali-
cious software presented in the format of compiled object
code or encrypted code, which is designed to look like a legit-
imate program but contains malicious code; while the latter is
a type of malicious circuitry, e.g., intelligent property (IP)
core or system-on-chip (SoC), which is intentionally inserted
into the hardware design of a system during the manufactur-
ing process. Regardless of their type, Trojans usually need to
be activated to be an actual “threat”. In general, Trojans are
designed to remain dormant and hidden in a system until ac-
tivated by a specific event or condition without being easily
detected by the user or real-time monitoring system.

In this paper, the edge-cloud architecture [6-8] for the big
data processing is mainly concerned. For the first time to our
knowledge, we employ graph processing as a demonstration
to especially design a new attack model for the security and
privacy issues therein [13]. Here, we concentrate on the mali-
cious data leakage and data manipulation, which are mainly
brought by the stealing and tampering attacks from the em-
bedded software Trojans, respectively. Furthermore, a con-
vincing lightweight GPL will be leveraged in this paper as the
example system for big data processing. To sum up, the novel
contributions of this paper are listed as below:

 • An attack model including multiple designs of software
Trojan with different activation mechanisms is presented
on the basis of the implementations of the adopted GPL
to perform imperceptible stealing and tampering attacks
onto the sensitive graph data involved.

 • We also make targeted discussions on certain common
mitigation approaches to help to describe and assess the
presented attack model in turn, which primarily contains
the recognition operated by human beings and the pre-
checking within the real-time monitoring system.

 • Evaluation and analyses indicate that, the proposed Tro-
jan designs in our attack model are highly competitive in
stealthiness and extra latency incurred, which is scalable
for other scenarios in big data processing as well.

The rest of the article is organized as follows: Section 2
introduces related work and motivation, respectively; Section
3 shows the fundamental design of the adopted GPL, followed
by a detailed description of the proposed attack model through
different Trojan triggers and some corresponding common
mitigation schemes in Section 4. Evaluations and discussions
on further considerations of Trojan design are provided in
Section 5. Finally, Section 6 concludes this paper.

2. Preliminary and Motivation

2.1 Background and Related Work

2.1.1 Data Structure and Representations

Graph is a kind of mathematical structure which represents
pairwise relationships between various objects. In general, a
graph is composed of two basic components [3, 4]:

i) A finite set of vertices called as nodes as well, such as

Vertex u & v that are denoted as two vertices in a graph;
ii) A finite set of pairs in the form (u, v) called as edges.

These pairs can be ordered or unordered. The ordered or un-
ordered pair is to be adopted in the case of directed or undi-
rected graph (di/undi-graph), suggesting that there is a uni-
directional/bidirectional edge between u and v.

Note that both vertices and edges may contain weights to
show the values or costs. There are also many ways to repre-
sent a graph, and the most commonly utilized formats include
adjacency list (AL), adjacency matrix (AM), edge list (EL),
compressed sparse row/column (CSR/CSC), etc. Moreover,
the choice of graph representation is situation-specific, com-
pletely depending on the ease of use, category of operations
to be performed, and hardware resources as well.

2.1.2 Graph Management System

As a major category of graph management systems, graph
processing system (such as GPF and GPL) is more concerned
here, as graph databases (like AllegroGraph, ArangoDB, Ori-
entDB, MarkLogic, Neo4j, and InfiniteGraph) [4, 14] are usu-
ally deployed on the platforms with sufficient computational
and storage resources, which will restrict the platform scala-
bility. What’s more, there are the distributed system and sin-
gle-machine system into which GPF/GPL can also be broadly
classified [3, 15]. The former relies heavily on the relatively
powerful underlying infrastructure, such as BiGraph, Giraph,
GraphLab, GraphX, PowerSwitch, PowerGraph, Pregel, etc.
[5, 15], while the latter provides an appropriate way for edge
computing by making full and efficient use of the limited
available resources. The distributed systems can serve nearly
arbitrary scales of graphs, and perform better as well. How-
ever, recent studies indicate that the single-machine systems
can also achieve comparable performance as the distributed
systems on large graphs, like the Boost Graph Library (BGL),
Ligra, igraph, GraphChi, JGraphT, NetworKit, NetworkX, X-
Stream, and so on [16-21]. However, most of the state-of-the-
art single-machine systems operate separately on a single de-
vice only, greatly restricting the potential on performance and
power efficiency for resource-sensitive scenarios. Actually,
data/resource sharing based on inter-device interactions has
also been supported by the latest systems, which is highly ben-
eficial to the improvement of overall data processing and re-
sponse speed, especially in edge computing [21, 22].

2.1.3 Security and Privacy of Big Data Processing

Cloud Secure Alliance (CSA) has categorized the security and
privacy challenges within the big data ecosystem into four dif-
ferent aspects as below: infrastructure security, data privacy,
data management and integrity, and reactive security [23].
Many typical solutions for the challenges above have been
proposed in the past decades from a software perspective [23]:
1) Access control: Restrict access to sensitive data and pre-
vent unauthorized access or tampering; 2) Data encryption:
Protect sensitive data from being accessed or tampered with
by unauthorized users; 3) Data anonymization: Protect user
privacy by removing the personally identifiable information

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
3

from datasets to prevent data breaches or unauthorized access;
4) Auditing and monitoring: Detect and respond to security
incidents in real time to identify potential security threats or
anomalies; 5) Secure coding practices: Prevent security vul-
nerabilities from being introduced into the system by leverag-
ing secure coding standards or performing code reviews; 6)
Third-party risk managements: Perform due diligence on
third-party vendors or require them to comply with specific
security standards/protocols, as they may have access to sen-
sitive data; 7) Regular software updates or patches: Prevent
security vulnerabilities from being exploited using a software
update policy or automated patch management tools.

There are several typical researches and studies that espe-
cially devote attention to the security issues on graph analytics
in big data processing as well in recent years: 1) Verifiable
graph processing. To run the verifiable graph processing on
the cloud side where the service might be compromised by
some adversaries, [22] designs a system, ALITHEIA, which
can minimize the use of generic verifiable computation (VC)
techniques and achieve significant performance improve-
ments with much less storage. For a similar security purpose,
[23] also puts forth both public and designated verification
schemes focusing on subgraph matching issues for outsourced
graph-based data to realize fast verification and low local
storage overhead. 2) Secure graph processing system. [24]
offers GraphSC, introducing the parallel programming par-
adigms to secure computation and enabling their efficient
secure executions on large datasets to avoid leaking any pri-
vate information at low costs. Then, [25] presents a highly-
scalable secure computation of graph algorithms where se-
curity against malicious behaviors is achieved by adding an
efficient verification for the shuffle operation (instead of the
sorting in GraphSC) therein and computing circuits through
secure protocols to cope with data leakage. 3) Secure graph
database. [26] proposes GraphSE2, an encrypted graph da-
tabase for online social network services of the cloud to ad-
dress massive data breaches, while SMPG, a system for se-
curing multi-party computation on graph databases by using
multi-party computation (MPC) protocols to make queries
[27]. [28] studies the privacy preserving query services for
strong simulation queries in the paradigm of graph database
outsourcing where the third-party service provider may not
be trusted. 4) Other progresses. [29] proposes a new model,
i.e., (k, t)-privacy, to guarantee data privacy as well as opti-
mize the efficiency of social subgraph matching, aka a graph
mining task. Besides, a graph encryption technique that al-
lows calculating the clustering coefficient of social networks
on the outsourced encrypted graph is given in [30] to deal
with data leakage and misuse by unauthorized parties.

2.2 Motivation

As mentioned above, graph-based data are widely distributed
in diverse human activity domains in smart society, and graph
analytics turns out to be an important specialized subfield of
big data processing. Hence, we take the security and privacy

of graph processing as the demonstrative example in this pa-
per, which will also be a benefit for other related techniques
in big data processing. Additionally, in consideration of the
friendliness of the user interface (UI), decent performance,
scalability of deployment platforms (i.e., adaptability for de-
vices of different capacities in the edge-cloud architecture),
run-time interactivity between different devices, and accepta-
ble system overhead, we utilize a convincing lightweight in-
teractive single-machine GPL (called LI-GPL here, the same
below) [21, 22] as the main environment of handling graphs.
Notice that LI-GPL is employed as a typical and proper sys-
tem for representation here. The work flow of most graph pro-
cessing systems is basically similar indeed [3].

As several mitigation schemes have been given for en-
hancing the secure graph processing, we intend to concentrate
on the design of attack models of adversaries, which is rela-
tively scarce currently indeed. Our attack model will be built
according to the practical usage of LI-GPL that is executed in
the command-based pattern. Multiple activation mechanisms
of the malicious Trojans are to be provided in Section 4 later
in detail, which requires good stealthiness, high attack success
rate, and low latency incurred. Moreover, we will make some
extra discussions on the common mitigations to help to assess
our attack model in the same section then.

3. Fundamental Design of LI-GPL

3.1 General Overview

Vertices (nodes) and edges are the basic elements of a graph,
i.e., Graph = (Vertices/Nodes, Edges). Similar to other graph
processing systems, the data structure of LI-GPL is declared
using these two elements [21], where the cost of each vertex
or edge is also assigned in a weighted graph. All the pro-
cessing actions for graphs are based on this data structure.

Fig. 1 Major component modules of LI-GPL.

As LI-GPL can ensure a friendly UI and device-to-device
interactions for better user experiences and execution perfor-
mances, corresponding strategies are involved in its design
process. Above all, the schematic structure of LI-GPL is dis-
played in Fig. 1 [7] indicating there are a few core component
modules therein, which can be classified into four higher-level

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
4

packages, i.e., basic graph processing module (BGPM), func-
tional algorithm module (FAM), graph manipulation module
(GMM), and platform operational module (POM). In addition,
the BGPM is further constituted by graph operational module
(GOM), graph query module (GQM), and graph format mod-
ule (GFM). LI-GPL relies on the classic BGL, especially for
BGPM, FAM, and GMM, bringing concise codes, good com-
patibility, and decent performance. As BGL supports a large
scale of graph sizes, i.e., from tens to millions of vertices [16],
it will surely not be an obstacle for the terminals to manage
the relatively small amount of data in edge computing.

Specifically, BGPM covers the basic categories of graph
processing, including the common updating, inquiring, format
converting, and so on. In view of the usual human activities
based on edge-cloud architecture in smart society, six widely
applied graph primitives are provided initially in FAM, i.e.,
breadth/depth first search (BFS/DFS), shortest path(s) search
(SPS), centrality analysis (CA), clustering (CL), graph reduc-
tion (GR), and data concatenation (DC), which aim to acquire
prompt outcomes via the efficient path-finding, graph-search-
ing, or flow-controlling calculations [33]. Graphviz is utilized
to cooperate with the BGL closely in GMM for on-site im-
porting/exporting or off-site loading of graph files, and image
drawing (i.e., data visualization) in PNG format [34, 35]. In
the meantime, file generation, vertex/edge-cut partition, and
memory evaluation of graph data are supported in GMM as
well [21, 22]. In addition, the work flow of LI-GPL requires a
series of relevant operations to control the overall procedure
of graph processing, which is supported by POM.

3.2 Interaction via LI-GPL

Network socket is the internal basis of the operation interface
for users in LI-GPL [22, 36], whose framework is broadly il-
lustrated in Fig. 2. Notice that, from the aspect of software
engineering, client and server of a socket-based communica-
tion are usually treated as front-end and back-end, respec-
tively. Users operate on the front-end via the user interface of
LI-GPL, while the server acts as a system daemon, in fact. For
LI-GPL, multiple clients are supported for one daemon. Spe-
cifically, after obtaining a certain request from one user, the
client starts to create the first socket to deliver the user’s “com-
mand” to the server that will send an “ACK” message back to
the client after receiving the command. When the latter gets
this ACK, it utilizes the second socket to send the parameters
associated with this command (e.g., the vertex or edge names)
to the server, which will begin to perform the correspond-
ing operation and pass the result back to the client then.

The client-server interaction can be implemented on the
same device or two different devices, which denotes the intra-
device or inter-device data processing actually. Here, on ac-
count of the front-end structure of LI-GPL, users do not need
to edit extra codes on the basis of the provided program. This
is truly friendly to general users with no sufficient program-
ming skills, which significantly enhances the user experience
for ubiquitous graph analytics in smart society.

Fig. 2 Overview of the socket-based framework.

3.3 Existing Security Measures

As cryptography is regarded as an effective measure to protect
the sensitive data from being hacked for illegitimate usage, a
lightweight hybrid communication strategy based on cryptog-
raphy is applied for the protection of user privacy in LI-GPL.
Concretely, exclusive OR (XOR) and OpenSSL AES-256 (i.e.,
advanced encryption standard with 256-bit keys) [37] are lev-
eraged for either fine-grained or coarse-grained en-/decryp-
tion, where the difference is whether the entire message or just
a portion of the message (such as parameters entered with the
commands or the core information within the returned results)
transferred using socket scheme is en-/decrypted. Moreover,
graph files can also be en-/decrypted in an online/offline way,
which is still a coarse-grained scheme. Notice that, keys can
be iteratively updated through hash functions [38] if the pre-
vious one is found to have been cracked by adversaries.

4. Attack Model for Graph Processing via LI-GPL

In this section, we will introduce the new attack model here.
Compared with the threat model [39], the attack model fo-
cuses more on the technical aspects of attacks, describing
how attackers interact with the system and how they can ex-
ploit its weaknesses to achieve their goals [13, 40]. On the
basis of the characteristics of an attack model, in general, the
attack model of software Trojans primarily consists of em-
bedding mode, malicious activity, and activation mechanism,
revealing the particular tactics employed by the adversaries
in detail [11-13]. Common mitigation approaches, case stud-
ies, and relevant discussions will be given subsequently as
well to promote the assessment of our model in turn.

4.1 Embedding Mode and Malicious Activity

Usually, the third-party vendors with access to the software
development process can potentially introduce a Trojan or
other malware in the programming, testing, or deployment

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
5

stage [11, 12]. Assume LI-GPL with Trojans is provided to
users to handle and analyze the graph-based data. Similar to
the general software systems, processed files (like compiled
object code or encrypted code) will be delivered instead of
the original “source code”, while certain vulnerabilities are
exploited during the development process to design Trojans.
Therefore, direct code reviews by users are not applicable in
this situation. Besides, the integrity of software cannot be
guaranteed by relevant tools as well, e.g., hash functions
(such as MD5, SHA-1) [38], since software products are di-
rectly provided by third-party vendors. Nonetheless, the ad-
versaries still need to make slight changes to the legitimate
system to evade obvious flaws that are easy to find.

In addition, as data leakage/manipulation/loss or unau-
thorized access could be caused by the stealing or tampering
attacks, we will focus on these two activities in graph pro-
cessing. Specifically, the data in the graph files faces the risk
of being stolen or changed/discarded, which will lead to cer-
tain privacy disclosures and purposeful/random incorrect or
inaccurate outputs of data analytics finally. As LI-GPL is op-
erated using commands sent from the client [21, 22], some
typical ones are applied as a means of malicious attack based
on the network socket, e.g., “Export/Load graph” is for the
stealing attacks through the graph files, while “Add/Remove
vertex/edge” and “Clear graph” are for mounting tampering
attacks on the in-memory data. Of course, the commands in-
volved with the provided graph algorithms (like BFS/DFS,
SPS, CA, CL, GR, and DC) can obtain or modify the graph
data as well, but the target of a stealing attack is inclined to
access the accurate and complete information of a graph, and
the routine operations in GOM are capable to bring lower
operating delay and power consumption, making the tam-
pering attack more imperceptible. In addition, all the attacks
will only be launched after the activation of Trojans.

4.2 Activation Mechanism

As LI-GPL is executed via the command-based pattern, we
will give three main categories of “commands” to activate
the malicious Trojans, and their work procedures for stealing
or tampering with data after the activation. Attackers tend to
activate the Trojans prior to the formal graph analytics. Nor-
mally, they place a message filter (MF) at the socket receiver
for all the input messages before the system begins to pro-
cess them. Once unqualified, the messages will directly pass
through MF and get to the following part for data handling.
Otherwise, the relevant activation “signal” will be sent to the
malicious action generator (MAG), in which the latest com-
mand will be replaced with a new one or a new pre-set com-
mand will be injected behind the current one, as the “attack”
commands cannot be run directly by the unauthorized users
in general [23]. Then, MAG notifies MF to carry out the ma-
licious actions for attacks accordingly. Note that no other ex-
tra adversary behaviors will be considered in LI-GPL.

Here, we present the imperceptible command triggers for
Trojans in detail. The first category is to make a command-

like message to be transmitted to the cloud/edge devices de-
ploying the counterfeit LI-GPL. The messages are specifi-
cally designed, e.g., “Activation message for the Trojans”.
The second category adopts the real commands, introduc-
ing the pre-configured parameters associated with those nor-
mal commands. These parameters could be either valid or
invalid, such as “Remove edge, ‘123→456’” or “Add vertex,
‘For Trojan activation’”. The third category is to employ a
command set as the trigger, which possesses a strong decep-
tive nature. All the input commands and the related parame-
ters are ordinary, which is the core difference compared with
the first two categories and achieves better deceptiveness to
users or monitoring systems. A set of consecutive commands
meeting certain combination or permutation requirements
acts as a critical role within the high-stealthiness activation
mechanism of Trojans. Suppose the size of command set is
“3”, for instance, malicious attacks could be activated if
there is a set containing “Clear graph”, “GR”, and “DFS”,
or a set with specific sorting, like “Clear graph; GR; DFS”,
in the input data. For all the categories above, they are to be
“transformed” into other normal commands (e.g., the ones
mentioned in Section 4.1) for attacks later to avoid being di-
rectly detected as the unidentifiable ones by the system.

4.3 Common Mitigations for Assessment

Although the main target of this paper is to propose a mali-
cious attack model for big data processing, corresponding
common methods for mitigation of the attacks will also be
discussed, which can help us to assess and analyze the Tro-
jan design in turn, and will be beneficial for future security
enhancement of big data processing as well.

Fig. 3 Graph processing with robust or counterfeit LI-GPL.

As illustrated in Fig. 3, (a) gives the schematic diagram
of graph processing using robust LI-GPL, while (b) provides
the procedure of the counterfeit LI-GPL with the designed
Trojans and common mitigation approaches. Concretely, for
Fig. 3(a), a result will be returned for each command on the
client; in Fig. 3(b), the red blocks denote the Trojan modules,
while the yellow ones indicate the adoptable checking meth-
ods for the proposed attack model. Generally, the real-time

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
6

monitoring conducted by human beings can act as the initial
checking for the counterfeit LI-GPL, which is for the first
category of triggers only. While, for the invalid parameters
in the second category, potential alertness is probably to be
raised but the message will not be blocked for the next step.
Furthermore, a pre-checking step ahead of the formal graph
processing phase, which is represented by the gray block in
Fig. 3(b), could usually be placed as well, helping to early
detect those suspicious messages passing through the human
checking. Certain rules can be made for pre-checking, which
basically performs as the preliminary filtering, e.g., the users
could set the maximum/minimum character length of the pa-
rameters in advance, a command with overlong/overshort
(invalid) parameters will be blocked then. But, this cannot
ensure the total prevention of the second category of triggers.
While, for the third category, the monitoring of both human
beings and pre-checking cannot stop its execution in LI-GPL
at all, as all the received commands are completely legiti-
mate. To sum up, the actual effects of the common mitiga-
tions above are very unstable, and are largely dependent on
the human’s work experiences and the specific configura-
tions set for pre-checking. In the meantime, there will be still
an inherent part of the input triggers that cannot be recog-
nized and activate the embedded Trojans finally.

4.4 Case Study and Related Discussion

In this sub-section, we provide a simple instance to demon-
strate the work flow on the basis of the framework illustrated
in Fig. 3(b). A sequence of commands, “Activation message
for the Trojans; Add vertex, ‘For activation’; Remove edge,
‘123→456’; Clear graph; GR; DFS, ‘0’”, is sent via network
socket, for example. Commonly, human beings will not let
the first “command” pass through, but cannot do anything
even if they may have doubts about the second one. In the
meanwhile, “Activation” could be set as a forbidden charac-
ter string beforehand for pre-checking, and the second com-
mand is to be blocked accordingly. While for the commands
behind, they will activate the Trojan if the trigger is pre-de-
signed as the set of four consecutive commands including
“Remove edge”, “Clear graph”, “GR” and “DFS”. For in-
stance, “Load, ‘File_1’” is inserted after “DFS, ‘0’” in MAG,
and the data in the on/off-site graph file File_1 will be stolen
by the adversaries then. On the other hand, considering of
the existing security measures in LI-GPL, graph data could
be encrypted via XOR or AES-256, which may prevent the
direct stealing or tampering attacks (note: some tampering
attacks without entering parameters could still work, e.g.,
“Clear graph”). Meanwhile, the adversaries tend to crack the
encryption keys using another controlled device to avoid the
possibly observable processing latency or hardware imple-
mentation. For example, by means of the command “Print
graph”, the plaintext of a prepared graph file and the cipher-
text returned by the counterfeit LI-GPL deployed on the de-
vice in normal use will be used for known plaintext attacks.
Besides, utilizing side-channel attacks or even covertly dis-
abling encryption functionality of LI-GPL are regarded as

options as well. As long as the system countermeasures are
not applied due to the detection of the behaviors above, the
stealing/tampering attacks will always be achieved.

Given the interactions in LI-GPL which is based on the
network socket, adversaries can conduct the attacks on ei-
ther the same or a different device. In other words, attackers
are capable to steal or tamper with the graph data on certain
devices in a local or remote way. The attack model designed
here also makes sense for other application scenarios in big
data processing as well and is scalable for them. Our model
is implemented based on the text contents as the input data.
Similarly, the input data can also be images, videos, audios,
etc., such as image recognition for authorized accesses and
video analysis for surveillance. For instance, a certain image
(e.g., an all-black or all-white image) could be the trigger to
make falsified classifications to access the sensitive infor-
mation. Besides, an original image or image with modified
pixel bits, or a set of consecutive images in specific sorting,
can be leveraged for the same purpose. Moreover, the real-
time monitoring performed by human beings and pre-check-
ing is applicable as well here for attack mitigation.

5. Evaluation and Analyses

Taking account of the common mitigation schemes men-
tioned above, this section offers a computational evaluation
of the proposed attack model through the graph processing
of LI-GPL based on edge-cloud architecture. Discussions on
future studies will be provided as well at the end of this sec-
tion. Notice that all the presented experimental results are
the average values after multiple data collections.

5.1 Experimental Setup

Graph datasets. We leverage large real-world graph datasets
to conduct evaluations. Table 1 lists the graphs of SNAP da-
tasets [41] adopted therein, which are chosen in consideration
of the graph size & classification, and available resources of
edge device employed. All the datasets are represented in AL
format for the experiments, and they can be processed directly
on the edge devices in use for various evaluation schemes. It
is worth noting that our evaluations remain compelling re-
gardless of the graph’s scale. The characteristics of the at-
tack model have good scalability indeed. Some properties of
the attack model will even become more apparent as the
graph size increases, which will be discussed below.

Environment. 1) The BGL (v1.67), Graphviz (v2.46.0),
METIS (v5.1.0) [42], and OpenSSL (v1.1.1j) are installed to
assist LI-GPL as well; 2) Unless otherwise stated, all the as-
sociated settings of one command will be configured as the
same for fair evaluations in each comparison. Besides, the se-
curity measures of LI-GPL are enabled by default.

Computing platforms. We adopt Raspberry Pi 3 Model
B and Raspberry Pi 4 Model B (Rasp-Pi 3B and Rasp-Pi 4B)
as the emulated edge devices with different resources and
capacities to build a heterogeneous environment on the edge
for more practical scenarios [43]. Specifications of Rasp-Pi

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
7

3B/4B and cloud server are given in Table 2. By default, the
edge devices connect to the Internet in a wireless way.

Table 1 Leveraged graph datasets.

Dataset #Vertices #Edges Classification
email-Eu-core 1,005 25,571 Networks with GT communities

wiki-Vote 7,115 103,689 Social networks
p2p-Gnutella04 10,876 39,994 Internet peer-to-peer networks

ca-HepTh 9,877 25,998 Collaboration networks
ego-Facebook 4,039 88,234 Social networks

gemsec-Facebook 11,565 67,114 Social networks

Table 2 Platform characteristics.

Platform Specification

Rasp-Pi 3B Quad-core 1.2GHz Broadcom BCM2837 64-bit SoC, 1GB RAM,
32GB Micro-SD card (OS: 64-bit Ubuntu 21.04)

Rasp-Pi 4B Quad-core 1.5GHz Broadcom BCM2711 64-bit SoC, 4GB RAM,
32GB Micro-SD card (OS: 64-bit Ubuntu 21.04)

Cloud Server 14-core 3.3GHz Intel i9 64-bit CPU, 128G RAM,
2T SSD (OS: 64-bit Ubuntu 20.04.5)

5.2 Stealthiness of Trojans

We will provide both the qualitative analyses and quantita-
tive evaluations on the Trojan’s stealthiness including anti-
recognition and anti-duplication of the triggers, which are
the critical indicators for the quality of Trojan design. Spe-
cifically, for the qualitative part, analyses are summarized
through Table 3, where “A” and “B” denote the command
triggers with valid and invalid parameters, respectively (the
same below). From Table 3, there is indeed a certain proba-
bility of being recognized or mistakenly activated for the
Trojans using the first and second categories of triggers. But,
as the experiences of human beings and the configurations
of pre-checking are fairly subjective, Trojans would still be
well hidden if the real-time monitoring is relatively loose.
Accordingly, the attack success rate will be considerably
high. Notice that, usually there is a pre-processing stage for
other formats of the input data, like image, audio, and video,
which will be compacted, resized, or cropped therein. There-
fore, for the first and second (B) categories of triggers, they
may be distorted and the Trojans would not be activated suc-
cessfully, leading to lower attack feasibility.

Table 3 Stealthiness of Trojan Designs.

Trigger Anti-recognition Anti-duplication

The 1st category Only exposed to experienced
human beings

Hard for users to reproduce
the triggers

The 2nd
category

A Only exposed to certain pre-
set configurations

Low possibility for users to
reproduce the triggers

B Hard for users to reproduce
the triggers

The 3rd category Strong stealthiness for existing
monitoring

Low possibility for users to
reproduce the triggers

Table 4 Duplication Rates of Triggers (I).

Dataset Duplication Rate of Command
One-parameter Two-parameter

email-Eu-core 2.49×10-2% 0.56×10-3%
wiki-Vote 0.35×10-2% 0.14×10-3%

p2p-Gnutella04 0.23×10-2% 0.36×10-3%
ca-HepTh 0.25×10-2% 0.55×10-3%

ego-Facebook 0.62×10-2% 0.16×10-3%
gemsec-Facebook 0.22×10-2% 0.21×10-3%

Table 5 Duplication Rates of Triggers (II).

Type of Set Duplication Rate of Command
SA SB SC SD

Combination-set 0.25×10-1% 0.21×10-1% 0.29×10-1% 0.3×10-1%
Permutation-set 0.01×10-1% 0.05×10-1% 0.03×10-1% 0.04×10-1%

Next, regarding the quantitative part, we solely provide
evaluation results on the indicator “anti-duplication” here,
as the corresponding factors are measurable only for the sec-
ond category of triggers with valid parameters and the third
category therein. In particular, 1) For the second category of
triggers, Table 4 shows the duplication rates of triggers in
regular usage through the employed datasets. Normally, the
command parameters configured by users in LI-GPL contain
the names of vertices/edges/files, graph formats, weights of
vertices/edges, and so on. For a single command, there are
up to three parameters, e.g., source and destination nodes,
and edge weight for “Add edge” in the directed graphs. Here,
it is assumed that only the names of vertices/edges in a da-
taset are needed to be considered for convenience. From Ta-
ble 4, we can find that the corresponding rates are extremely
low, especially for the larger-sized graphs, even if the com-
mands have not been specified yet. 2) For the third category
of triggers, 100,000 to-be-entered user command sequences
per size, with repeats allowed, are generated randomly. We
carry out related evaluations based on the combination and
permutation of random consecutive commands in the pre-set
sets of the same and different sizes, respectively. Firstly, for
the former, let the size be “3” for the four randomly gener-
ated sets, i.e., SA, SB, SC, and SD. The obtained rates are
demonstrated in Table 5, showing that values are truly low
as well and different sets of the same sizes have similar du-
plication rates. While results of the latter are revealed in Fig.
4, where the size of the set ranges from 2 to 6. It is indicated
that the relevant rates become lower and lower when the size
of command set grows. All the rates remain “0%” when the
set size is larger than “4”. Besides, the triggers via permuta-
tion-set are more imperceptible as its constraint is much
stronger than those using combination-set, especially when
the scale of the command set gets larger.

Fig. 4 Duplication rates of triggers via command sets of different sizes.

5.3 Latency Incurred by Attacks

In the realm of secure computing, the extra burden, which is
a primary concern for attackers, typically manifests as the
additional incurred latency stemming from the activation of
Trojans (containing all the procedures executed in MF and

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6

Combination-set
Permutation-set

Size of the Command Set

D
up

lic
at

io
n

Ra
te

 (%
)

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
8

MAG) within the attack model. Poor stealthiness might be
caused as a result of the relatively long response times of the
systems. Although the encryption functionality is enabled,
we assume that the keys have been cracked, then the related
cost is not considered here. Table 6 offers the specific laten-
cies due to the implementations of MF and MAG on differ-
ent devices locally. For the third category of triggers, the size
of command set is configured as “3”. It is found that the la-
tencies caused by the activation via all three categories of
triggers and the injection or replacement of new commands
can be less than 50μs for all the devices, which is also ex-
tremely low indeed. In comparison with other attack models
for big data processing presented in [40], in which the min-
imum proportionate increase in response time is 2.78%, our
model, as evidenced by Table 6 and the specific execution
times of different graph primitives through LI-GPL [21, 22],
demonstrates a maximum increase of only 2.37%. The steal-
ing and tampering attacks will be performed subsequently
after the activation of Trojan, whose execution time is highly
correlated with the scales of the datasets adopted.

Table 6 Latency Incurred in MF & MAG.

Trigger Latency Involved with Trojans
Rasp-Pi 3B Rasp-Pi 4B Cloud Server

The 1st category < 1μs < 1μs < 1μs
The 2nd

category
A 4μs 3μs 1μs
B 4μs 4μs 2μs

The 3rd category 41μs 27μs 13μs

5.4 Discussion on Further Work

Further experimental evaluations to make comparisons on
stealthiness with the state-of-the-art advancements in secu-
rity and privacy vulnerabilities would be necessarily con-
ducted when newer Trojan-involved attack models for graph
processing become available in the future, as this is the first
time (to our knowledge) to build such a novel attack model
demonstrated through the ubiquitous graph analytics. On the
other hand, we aim to persist in carrying out our research
from different perspectives or employing emerging tech-
niques. Specifically, in the past decade, hardware security
has gained increasing attention from both academia and in-
dustry. The afore-mentioned hardware Trojans have become
a growing concern, which can be achieved by maliciously
modifying integrated circuits, e.g., MF can be implemented
through a small cache with relevant judgment logics. Gen-
erally, the cost of hardware Trojans is higher, but they are
more difficult to detect and remove than the software Tro-
jans. Hence, designing corresponding Trojans from a hard-
ware perspective for the proposed attack model in this paper
opens a new direction of the future work for a comprehen-
sive design. Additionally, we also intend to continue advanc-
ing the mitigation schemes against Trojan attacks in the field
of big data processing. With the wide application of artificial
intelligence (AI) in information security, intelligent Trojan
detection, and self-correction of processing results on the
basis of machine learning (ML) become our future direc-
tions as well [44]. Although there are many related research

studies now, it is crucial for us to find better ways to adapt
to our proposed attack model and application scenarios. Fur-
thermore, the corresponding coping measures for software
and hardware Trojans will differ significantly as well.

6. Conclusion

As security and privacy concerns continue to grow among
users in the realm of big data processing, various mitigations
have been presented as countermeasures to address these is-
sues. However, there is scarce research on the attack design
of adversaries. Thus, for the first time to our knowledge, we
especially propose a novel attack model demonstrated via
the graph analytics from a software perspective in this paper.
The model includes a detailed discussion of the embedding
mode, malicious activity and activation mechanism of a Tro-
jan. In particular, Trojan activation mechanisms are more fo-
cused on therein, making the proposed attacks imperceptible
to users and monitoring systems. Our attack model is scala-
ble and can be widely applied in big data processing based
on the edge-cloud architecture in smart society. Evaluations
show that Trojans in the attack model have excellent stealth-
iness and can achieve goals with low extra latency.

Acknowledgments

This work is supported, in part, by JST CREST Grant Num-
ber JPMJCR18K1, Japan.

References

[1] F. Mehdipour, H. Noori, et al., “Energy-Efficient Big Data Analytics in Data-
centers,” Advances in Computers, vol. 100, 2016, pp. 59-101.

[2] Y. Xia, I. G. Tanase, et al., “Explore Efficient Data Organization for Large Scale
Graph Analytics and Storage,” Proceedings of Big Data, 2014, pp. 942-951.

[3] M. E. Coimbra, A. P. Francisco, and L. Veiga, “An Analysis of the Graph Pro-
cessing Landscape,” Journal of Big Data, 8(55), 2021, pp. 1-41.

[4] I. Robinson, et al., “Graph Databases,” O'Reilly Media, Inc., 2015.
[5] S. D. Pollard and B. Norris, “A Comparison of Parallel Graph Processing Im-

plementations,” Proceedings of CLUSTER, 2017, pp. 657-658.
[6] J. Zhou, et al., “Interactive and Reliable Graph Processing via the Edge-Cloud

Collaboration Framework,” Proceedings of HPCC, 2022, pp. 388-395.
[7] J. Zhou, et al., “An Edge-Cloud Collaboration Framework for Graph Pro-

cessing in Smart Society,” IEEE TETC, 11(4), 2023, pp. 985-1001.
[8] Y. Chen, B. Liu, W. Lin, and H. Cheng, “Survey of Cloud-Edge Collaboration,”

Computer Science, 48(3), 2021, pp. 259-268.
[9] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, et al., “A Survey on Edge Computing

Systems and Tools,” Proceedings of the IEEE, 107(8), 2019, pp. 1537-1562.
[10] E. Krishnasamy, et al., “Edge Computing: An Overview of Framework and

Applications,” PRACE Technical Report, 2020, pp. 1-20.
[11] M. Dener, G. Ok, et al., “Malware Detection Using Memory Analysis

Data in Big Data Environment,” Appl. Sci., 12(17), 2022, pp. 1-23.
[12] E. Damiani, C. A. Ardagna, F. Zavatarelli, et al., “Big Data Threat Landscape

and Good Practice Guide,” ENISA Report, 2016, pp. 1-62.
[13] R. Buyya, R. N. Calheiros, and A. V. Dastjerdi, “Big Data: Principles and Para-

digms,” Morgan Kaufmann, 2016.
[14] J. Guia, V. G. Soares, and J. Bernardino, “Graph Databases: Neo4j Analysis,”

Proceedings of ICEIS, 2017, pp. 351-356.
[15] N. Doekemeijer, “A Survey of Parallel Graph Processing Frameworks,” Report

Series of TU-Delft, No. PDS-2014-003.
[16] J. Siek, L. Lee, and A. Lumsdaine, “The Boost Graph Library: User Guide and

Reference Manual,” Pearson Education, 2001.

IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX
9

[17] D. Michail, J. Kinable, et al., “JGraphT—A Java Library for Graph Data Struc-
tures and Algorithms,” ACM TOMS, 46(2), 2020, pp. 1-29.

[18] G. Csardi and T. Nepusz, “The igraph Software Package for Complex Network
Research,” Int. J. Complex Syst., 1695(5), 2006, pp. 1-9.

[19] C. L. Staudt, et al., “NetworKit: A Tool Suite for Large-scale Complex Network
Analysis,” Network Science, 4(4), 2016, pp. 508-530.

[20] A. A. Hagberg, et al., “Exploring Network Structure, Dynamics, and Function
Using NetworkX,” Proceedings of SciPy, 2008, pp. 11-16.

[21] J. Zhou, et al., “A Lightweight Interactive Graph Processing Library for Edge
Computing in Smart Society,” Proceedings of CANDARW, 2021, pp. 62-68.

[22] J. Zhou and M. Kondo, “An Interactive and Reductive Graph Processing Li-
brary for Edge Computing in Smart Society,” IEICE Trans. Inf. & Syst., E106-
D(3), 2023, pp. 319-327.

[23] J. Moura and C. Serrão, “Security and Privacy Issues of Big Data,”
https://arxiv.org/abs/1601.06206, 2016, pp. 1-29.

[24] Y. Zhang, C. Papamanthou, and J. Katz, “ALITHEIA: Towards Practical Veri-
fiable Graph Processing,” Proceedings of CCS, 2014, pp. 856–867.

[25] Y. Zhu, H. Li, et al., “Verifiable Subgraph Matching with Cryptographic Accu-
mulators in Cloud Computing,” IEEE Access, vol. 7, 2019, pp. 169636-169645.

[26] K. Nayak, X. S. Wang, S. Ioannidis, et al., “GraphSC: Parallel Secure Compu-
tation Made Easy,” Processings of S&P, 2015, pp. 377-394.

[27] T. Araki, J. Furukawa, K. Ohara, B. Pinkas, et al., “Secure Graph Analysis at
Scale,” Proceedings of CCS, 2021, pp. 610-629.

[28] S. Lai, et al., “GraphSE2: An Encrypted Graph Database for Privacy-Preserv-
ing Social Search,” Proceedings of AsiaCCS, 2019, pp. 41-54.

[29] N. Aljuaid, A. Lisitsa, et al., “SMPG: Secure Multi-Party Computation on
Graph Databases,” Proceedings of ICISSP, 2022, pp. 463-471.

[30] L. Xu, J. Jiang, et al., “Privacy Preserving Strong Simulation Queries on Large
Graphs,” Proceedings of ICDE, 2021, pp. 1500-1511.

[31] K. Huang, H. Hu, et al., “Privacy and Efficiency Guaranteed Social Subgraph
Matching,” The VLDB Journal, 31(3), 2021, pp. 581-602.

[32] L. Sardar, G. Bansal, S. Ruj, and K. Sakurai, “Securely Computing Clustering
Coefficient for Outsourced Dynamic Encrypted Graph Data,” Proceedings of
COMSNETS, 2021, pp. 465-473.

[33] D. C. Kozen, “The Design and Analysis of Algorithms,” Springer, 1992.
[34] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, et al., “Graphviz — Open

Source Graph Drawing Tools,” Proceedings of GD, 2001, pp. 483-484.
[35] E. R. Gansner, E. Koutsofios, S. C. North, et al., “Graph Visualization in Soft-

ware Analysis,” Proceedings of AQSDT, 1992, pp. 226-237.
[36] W. R. Stevens, et al., "Unix Network Programming," Addison Wesley, 2003.
[37] OpenSSL software, https://www.openssl.org/.
[38] L. Chi and X. Zhu, "Hashing Techniques: A Survey and Taxonomy," ACM

Computing Surveys, 50(1), No. 11, 2017, pp. 1-36.
[39] A. Shostack, “Threat Modeling: Designing for Security,” Wiley, 2014.
[40] N. Li, H. Gao, et al., “Attack Models for Big Data Platform Hadoop,” Proceed-

ings of BigDataSecurity & HPSC & IDS, 2019, pp. 154-159.
[41] J. Leskovec and R. Sosič, “SNAP: A General-Purpose Network Analysis and

Graph-Mining Library,” ACM TIST, 8(1), 2016, pp. 1-20.
[42] G. Karypis and V. Kumar, "A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs," SISC, 20(1), 1999, pp. 359-392.
[43] Raspberry Pi, https://www.raspberrypi.org/.
[44] J. Zhou, et al., “Attack Mitigation of Hardware Trojans for Thermal Sensing via

Microring Resonator in Optical NoCs,” ACM JETC, 17(3), 2021, pp. 1-23.

 Jun Zhou is an appointed assistant professor
at Keio University, Japan. He received the
Ph.D. degree from Institute of Computing
Technology, Chinese Academy of Sciences in
2016. His main research interests include data
science, CPS, VLSI design and verification,
etc. He is a member of the ACM and CCF.

Masaaki Kondo is currently a professor in
the Faculty of Science and Technology at
Keio University and the leader of the next
generation high performance architecture re-
search team at RIKEN. He received the Ph.D.
degree from The University of Tokyo in 2003.
His research interests include computer archi-
tectures, high-performance computing, and
cognitive computing. He is a member of the
ACM, IEEE, IEICE and IPSJ.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

