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SUMMARY Big data processing is a set of techniques or programming 
models, which can be deployed on both the cloud servers or edge nodes, to 
access large-scale data and extract useful information for supporting and 
providing decisions. Meanwhile, several typical domains of human activity 
in smart society, such as social networks, medical diagnosis, recommenda-
tion systems, transportation, and Internet of Things (IoT), often manage a 
vast collection of entities with various relationships, which can be naturally 
represented by the graph data structure. As one of the convincing solutions 
to carry out analytics for big data, graph processing is especially applicable 
for these application domains. However, either the intra-device or the inter-
device data processing in the edge-cloud architecture is truly prone to be 
attacked by the malicious Trojans covertly embedded in the counterfeit pro-
cessing systems developed by some third-party vendors in numerous prac-
tical scenarios, leading to identity theft, misjudgment, privacy disclosure, and 
so on. In this paper, for the first time to our knowledge, we specially build 
a novel attack model for ubiquitous graph processing in detail, which also 
has easy scalability for other applications in big data processing, and dis-
cuss some common existing mitigations accordingly. Multiple activation 
mechanisms of Trojans designed in our attack model effectively make the 
attacks imperceptible to users. Evaluations indicate that the proposed Tro-
jans are highly competitive in stealthiness with trivial extra latency. 

Key words: Big data, graph processing, malicious attack, imperceptible 
Trojan, mitigation scheme. 

1. Introduction 

Big data refers to very large, complex, and rapidly-growing 
data that are difficult to manage and process using traditional 
tools and techniques. In fact, about 2.5 trillion bytes of data 
are created every day [1]. These data come from everywhere 
in society, containing structured, semi-structured, and un-
structured data, like text, audio, video, images, sensor data, 
etc. Big data processing involves the employment of special-
ized tools and technologies to store, manage, and analyze the 
massive data, from which the meaningful and actionable in-
sights are extracted, to inform decision making, improve 
business operations, and drive innovation in various fields 
of society. Apache engines, such as Hadoop, Spark, Flink, 
Storm, and Cassandra, are the representative open-source 
systems for big data processing in addition to some commer-
cial ones, like IBM InfoSphere BigInsights, Microsoft Azure 
HDInsight, Google Cloud Dataflow, and so on. [1]. 

In a smart society, people aim to utilize technology to 
ease their access to services, where several typical domains 
of human activity are involved, such as the social networks, 
medical diagnosis, recommendation systems, internal threat 
detection, transportation, Internet of Things (IoT), etc. These 
application domains often deal with a vast collection of en-
tities with varieties of relationships, which can be naturally 

represented by the graph data structure [2]. Graph analytics 
is a relatively new area of analytics referring to the analyses 
applied to graph-based big data, while the graph manage-
ment systems have been regarded as convincing solutions to 
perform the graph analytics [3, 4]. In general, there are two 
primary types of graph management systems having been 
designed by both academia and industry, graph processing 
system and graph database [4]. The former one mainly con-
sists of graph processing framework (GPF) and graph pro-
cessing library (GPL), which can also be broadly categorized 
as the distributed system and the single-machine system [3]. 
The mentioned Apache engines were not originally devel-
oped for graph processing, but some of them have been ex-
tended to support graph processing, e.g., Hadoop Giraph and 
Pegasus, Spark GraphX, and Flink Gelly [5]. 

Graph processing can be separately deployed on either 
cloud or edge side according to practical application scenarios. 
As an emerging trend of research for building smart society in 
the past couple of years, the edge-cloud collaboration support-
ing the interaction between different devices with adequate or 
constrained hardware resources for efficient graph processing 
has been applied as well [6-8]. Basically, because the availa-
ble computational and storage resources on the edge devices 
are normally restricted and insufficient, a relatively low-cost 
solution of graph analytics is more applicable [9]. Thus, the 
lightweight interactive graph management systems having de-
cent performances to support the handling of large graphs is a 
real necessity for edge computing [10] in smart society, which 
will be also taken into account in this paper. 

With the proliferation of various inter-connected and In-
ternet-connected devices, the volume of data collected, stored, 
and processed is increasing all the time. This also brings new 
challenges in terms of information security, like unauthorized 
access and data leakage/manipulation/loss as a result of the 
malware, leading to privacy disclosure, identity theft, poor de-
cision making, etc. [11]. Security and privacy are critical con-
cerns in big data processing, and comprehensive approaches 
are necessary to mitigate the risks and guarantee that sensitive 
data is managed appropriately. Actually, there are several 
representative categories of malware which are identified in 
the context of big data processing, like Trojan, virus, worm, 
ransomware, rootkit, spam, and spyware [11]. In comparison 
with other types of malware, Trojans possess several “ad-
vantages” from the perspective of adversaries, such as the 
stronger stealthiness for flexible and persistent attacks [11, 
12]. Therefore, the Trojans obtain our primary concern here. 
Usually, the Trojans can be divided into software Trojans and    †The authors are with Keio University, Yokohama-shi, Kana-
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hardware Trojans. Here, the former refers to a type of mali-
cious software presented in the format of compiled object 
code or encrypted code, which is designed to look like a legit-
imate program but contains malicious code; while the latter is 
a type of malicious circuitry, e.g., intelligent property (IP) 
core or system-on-chip (SoC), which is intentionally inserted 
into the hardware design of a system during the manufactur-
ing process. Regardless of their type, Trojans usually need to 
be activated to be an actual “threat”. In general, Trojans are 
designed to remain dormant and hidden in a system until ac-
tivated by a specific event or condition without being easily 
detected by the user or real-time monitoring system.  

In this paper, the edge-cloud architecture [6-8] for the big 
data processing is mainly concerned. For the first time to our 
knowledge, we employ graph processing as a demonstration 
to especially design a new attack model for the security and 
privacy issues therein [13]. Here, we concentrate on the mali-
cious data leakage and data manipulation, which are mainly 
brought by the stealing and tampering attacks from the em-
bedded software Trojans, respectively. Furthermore, a con-
vincing lightweight GPL will be leveraged in this paper as the 
example system for big data processing. To sum up, the novel 
contributions of this paper are listed as below: 

 • An attack model including multiple designs of software 
Trojan with different activation mechanisms is presented 
on the basis of the implementations of the adopted GPL 
to perform imperceptible stealing and tampering attacks 
onto the sensitive graph data involved. 

 • We also make targeted discussions on certain common 
mitigation approaches to help to describe and assess the 
presented attack model in turn, which primarily contains 
the recognition operated by human beings and the pre-
checking within the real-time monitoring system. 

 • Evaluation and analyses indicate that, the proposed Tro-
jan designs in our attack model are highly competitive in 
stealthiness and extra latency incurred, which is scalable 
for other scenarios in big data processing as well. 

The rest of the article is organized as follows: Section 2 
introduces related work and motivation, respectively; Section 
3 shows the fundamental design of the adopted GPL, followed 
by a detailed description of the proposed attack model through 
different Trojan triggers and some corresponding common 
mitigation schemes in Section 4. Evaluations and discussions 
on further considerations of Trojan design are provided in 
Section 5. Finally, Section 6 concludes this paper. 

2. Preliminary and Motivation 

2.1 Background and Related Work 

2.1.1 Data Structure and Representations 

Graph is a kind of mathematical structure which represents 
pairwise relationships between various objects. In general, a 
graph is composed of two basic components [3, 4]: 

i) A finite set of vertices called as nodes as well, such as 

Vertex u & v that are denoted as two vertices in a graph; 
ii) A finite set of pairs in the form (u, v) called as edges. 

These pairs can be ordered or unordered. The ordered or un-
ordered pair is to be adopted in the case of directed or undi-
rected graph (di/undi-graph), suggesting that there is a uni-
directional/bidirectional edge between u and v. 

Note that both vertices and edges may contain weights to 
show the values or costs. There are also many ways to repre-
sent a graph, and the most commonly utilized formats include 
adjacency list (AL), adjacency matrix (AM), edge list (EL), 
compressed sparse row/column (CSR/CSC), etc. Moreover, 
the choice of graph representation is situation-specific, com-
pletely depending on the ease of use, category of operations 
to be performed, and hardware resources as well. 

2.1.2 Graph Management System  

As a major category of graph management systems, graph 
processing system (such as GPF and GPL) is more concerned 
here, as graph databases (like AllegroGraph, ArangoDB, Ori-
entDB, MarkLogic, Neo4j, and InfiniteGraph) [4, 14] are usu-
ally deployed on the platforms with sufficient computational 
and storage resources, which will restrict the platform scala-
bility. What’s more, there are the distributed system and sin-
gle-machine system into which GPF/GPL can also be broadly 
classified [3, 15]. The former relies heavily on the relatively 
powerful underlying infrastructure, such as BiGraph, Giraph, 
GraphLab, GraphX, PowerSwitch, PowerGraph, Pregel, etc. 
[5, 15], while the latter provides an appropriate way for edge 
computing by making full and efficient use of the limited 
available resources. The distributed systems can serve nearly 
arbitrary scales of graphs, and perform better as well. How-
ever, recent studies indicate that the single-machine systems 
can also achieve comparable performance as the distributed 
systems on large graphs, like the Boost Graph Library (BGL), 
Ligra, igraph, GraphChi, JGraphT, NetworKit, NetworkX, X-
Stream, and so on [16-21]. However, most of the state-of-the-
art single-machine systems operate separately on a single de-
vice only, greatly restricting the potential on performance and 
power efficiency for resource-sensitive scenarios. Actually, 
data/resource sharing based on inter-device interactions has 
also been supported by the latest systems, which is highly ben-
eficial to the improvement of overall data processing and re-
sponse speed, especially in edge computing [21, 22]. 

2.1.3 Security and Privacy of Big Data Processing 

Cloud Secure Alliance (CSA) has categorized the security and 
privacy challenges within the big data ecosystem into four dif-
ferent aspects as below: infrastructure security, data privacy, 
data management and integrity, and reactive security [23]. 
Many typical solutions for the challenges above have been 
proposed in the past decades from a software perspective [23]: 
1) Access control: Restrict access to sensitive data and pre-
vent unauthorized access or tampering; 2) Data encryption: 
Protect sensitive data from being accessed or tampered with 
by unauthorized users; 3) Data anonymization: Protect user 
privacy by removing the personally identifiable information 
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from datasets to prevent data breaches or unauthorized access; 
4) Auditing and monitoring: Detect and respond to security 
incidents in real time to identify potential security threats or 
anomalies; 5) Secure coding practices: Prevent security vul-
nerabilities from being introduced into the system by leverag-
ing secure coding standards or performing code reviews; 6) 
Third-party risk managements: Perform due diligence on 
third-party vendors or require them to comply with specific 
security standards/protocols, as they may have access to sen-
sitive data; 7) Regular software updates or patches: Prevent 
security vulnerabilities from being exploited using a software 
update policy or automated patch management tools.  

There are several typical researches and studies that espe-
cially devote attention to the security issues on graph analytics 
in big data processing as well in recent years: 1) Verifiable 
graph processing. To run the verifiable graph processing on 
the cloud side where the service might be compromised by 
some adversaries, [22] designs a system, ALITHEIA, which 
can minimize the use of generic verifiable computation (VC) 
techniques and achieve significant performance improve-
ments with much less storage. For a similar security purpose, 
[23] also puts forth both public and designated verification 
schemes focusing on subgraph matching issues for outsourced 
graph-based data to realize fast verification and low local 
storage overhead. 2) Secure graph processing system. [24] 
offers GraphSC, introducing the parallel programming par-
adigms to secure computation and enabling their efficient 
secure executions on large datasets to avoid leaking any pri-
vate information at low costs. Then, [25] presents a highly-
scalable secure computation of graph algorithms where se-
curity against malicious behaviors is achieved by adding an 
efficient verification for the shuffle operation (instead of the 
sorting in GraphSC) therein and computing circuits through 
secure protocols to cope with data leakage. 3) Secure graph 
database. [26] proposes GraphSE2, an encrypted graph da-
tabase for online social network services of the cloud to ad-
dress massive data breaches, while SMPG, a system for se-
curing multi-party computation on graph databases by using 
multi-party computation (MPC) protocols to make queries 
[27]. [28] studies the privacy preserving query services for 
strong simulation queries in the paradigm of graph database 
outsourcing where the third-party service provider may not 
be trusted. 4) Other progresses. [29] proposes a new model, 
i.e., (k, t)-privacy, to guarantee data privacy as well as opti-
mize the efficiency of social subgraph matching, aka a graph 
mining task. Besides, a graph encryption technique that al-
lows calculating the clustering coefficient of social networks 
on the outsourced encrypted graph is given in [30] to deal 
with data leakage and misuse by unauthorized parties. 

2.2 Motivation 

As mentioned above, graph-based data are widely distributed 
in diverse human activity domains in smart society, and graph 
analytics turns out to be an important specialized subfield of 
big data processing. Hence, we take the security and privacy 

of graph processing as the demonstrative example in this pa-
per, which will also be a benefit for other related techniques 
in big data processing. Additionally, in consideration of the 
friendliness of the user interface (UI), decent performance, 
scalability of deployment platforms (i.e., adaptability for de-
vices of different capacities in the edge-cloud architecture), 
run-time interactivity between different devices, and accepta-
ble system overhead, we utilize a convincing lightweight in-
teractive single-machine GPL (called LI-GPL here, the same 
below) [21, 22] as the main environment of handling graphs. 
Notice that LI-GPL is employed as a typical and proper sys-
tem for representation here. The work flow of most graph pro-
cessing systems is basically similar indeed [3]. 

As several mitigation schemes have been given for en-
hancing the secure graph processing, we intend to concentrate 
on the design of attack models of adversaries, which is rela-
tively scarce currently indeed. Our attack model will be built 
according to the practical usage of LI-GPL that is executed in 
the command-based pattern. Multiple activation mechanisms 
of the malicious Trojans are to be provided in Section 4 later 
in detail, which requires good stealthiness, high attack success 
rate, and low latency incurred. Moreover, we will make some 
extra discussions on the common mitigations to help to assess 
our attack model in the same section then. 

3. Fundamental Design of LI-GPL 

3.1 General Overview 

Vertices (nodes) and edges are the basic elements of a graph, 
i.e., Graph = (Vertices/Nodes, Edges). Similar to other graph 
processing systems, the data structure of LI-GPL is declared 
using these two elements [21], where the cost of each vertex 
or edge is also assigned in a weighted graph. All the pro-
cessing actions for graphs are based on this data structure.  

 
Fig. 1  Major component modules of LI-GPL. 

As LI-GPL can ensure a friendly UI and device-to-device 
interactions for better user experiences and execution perfor-
mances, corresponding strategies are involved in its design 
process. Above all, the schematic structure of LI-GPL is dis-
played in Fig. 1 [7] indicating there are a few core component 
modules therein, which can be classified into four higher-level 
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packages, i.e., basic graph processing module (BGPM), func-
tional algorithm module (FAM), graph manipulation module 
(GMM), and platform operational module (POM). In addition, 
the BGPM is further constituted by graph operational module 
(GOM), graph query module (GQM), and graph format mod-
ule (GFM). LI-GPL relies on the classic BGL, especially for 
BGPM, FAM, and GMM, bringing concise codes, good com-
patibility, and decent performance. As BGL supports a large 
scale of graph sizes, i.e., from tens to millions of vertices [16], 
it will surely not be an obstacle for the terminals to manage 
the relatively small amount of data in edge computing. 

Specifically, BGPM covers the basic categories of graph 
processing, including the common updating, inquiring, format 
converting, and so on. In view of the usual human activities 
based on edge-cloud architecture in smart society, six widely 
applied graph primitives are provided initially in FAM, i.e., 
breadth/depth first search (BFS/DFS), shortest path(s) search 
(SPS), centrality analysis (CA), clustering (CL), graph reduc-
tion (GR), and data concatenation (DC), which aim to acquire 
prompt outcomes via the efficient path-finding, graph-search-
ing, or flow-controlling calculations [33]. Graphviz is utilized 
to cooperate with the BGL closely in GMM for on-site im-
porting/exporting or off-site loading of graph files, and image 
drawing (i.e., data visualization) in PNG format [34, 35]. In 
the meantime, file generation, vertex/edge-cut partition, and 
memory evaluation of graph data are supported in GMM as 
well [21, 22]. In addition, the work flow of LI-GPL requires a 
series of relevant operations to control the overall procedure 
of graph processing, which is supported by POM. 

3.2 Interaction via LI-GPL 

Network socket is the internal basis of the operation interface 
for users in LI-GPL [22, 36], whose framework is broadly il-
lustrated in Fig. 2. Notice that, from the aspect of software 
engineering, client and server of a socket-based communica-
tion are usually treated as front-end and back-end, respec-
tively. Users operate on the front-end via the user interface of 
LI-GPL, while the server acts as a system daemon, in fact. For 
LI-GPL, multiple clients are supported for one daemon. Spe-
cifically, after obtaining a certain request from one user, the 
client starts to create the first socket to deliver the user’s “com-
mand” to the server that will send an “ACK” message back to 
the client after receiving the command. When the latter gets 
this ACK, it utilizes the second socket to send the parameters 
associated with this command (e.g., the vertex or edge names) 
to the server, which will begin to perform the correspond-
ing operation and pass the result back to the client then.  

The client-server interaction can be implemented on the 
same device or two different devices, which denotes the intra-
device or inter-device data processing actually. Here, on ac-
count of the front-end structure of LI-GPL, users do not need 
to edit extra codes on the basis of the provided program. This 
is truly friendly to general users with no sufficient program-
ming skills, which significantly enhances the user experience 
for ubiquitous graph analytics in smart society. 

 
Fig. 2  Overview of the socket-based framework. 

3.3 Existing Security Measures 

As cryptography is regarded as an effective measure to protect 
the sensitive data from being hacked for illegitimate usage, a 
lightweight hybrid communication strategy based on cryptog-
raphy is applied for the protection of user privacy in LI-GPL. 
Concretely, exclusive OR (XOR) and OpenSSL AES-256 (i.e., 
advanced encryption standard with 256-bit keys) [37] are lev-
eraged for either fine-grained or coarse-grained en-/decryp-
tion, where the difference is whether the entire message or just 
a portion of the message (such as parameters entered with the 
commands or the core information within the returned results) 
transferred using socket scheme is en-/decrypted. Moreover, 
graph files can also be en-/decrypted in an online/offline way, 
which is still a coarse-grained scheme. Notice that, keys can 
be iteratively updated through hash functions [38] if the pre-
vious one is found to have been cracked by adversaries. 

4. Attack Model for Graph Processing via LI-GPL 

In this section, we will introduce the new attack model here. 
Compared with the threat model [39], the attack model fo-
cuses more on the technical aspects of attacks, describing 
how attackers interact with the system and how they can ex-
ploit its weaknesses to achieve their goals [13, 40]. On the 
basis of the characteristics of an attack model, in general, the 
attack model of software Trojans primarily consists of em-
bedding mode, malicious activity, and activation mechanism, 
revealing the particular tactics employed by the adversaries 
in detail [11-13]. Common mitigation approaches, case stud-
ies, and relevant discussions will be given subsequently as 
well to promote the assessment of our model in turn. 

4.1 Embedding Mode and Malicious Activity 

Usually, the third-party vendors with access to the software 
development process can potentially introduce a Trojan or 
other malware in the programming, testing, or deployment 
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stage [11, 12]. Assume LI-GPL with Trojans is provided to 
users to handle and analyze the graph-based data. Similar to 
the general software systems, processed files (like compiled 
object code or encrypted code) will be delivered instead of 
the original “source code”, while certain vulnerabilities are 
exploited during the development process to design Trojans. 
Therefore, direct code reviews by users are not applicable in 
this situation. Besides, the integrity of software cannot be 
guaranteed by relevant tools as well, e.g., hash functions 
(such as MD5, SHA-1) [38], since software products are di-
rectly provided by third-party vendors. Nonetheless, the ad-
versaries still need to make slight changes to the legitimate 
system to evade obvious flaws that are easy to find.  

In addition, as data leakage/manipulation/loss or unau-
thorized access could be caused by the stealing or tampering 
attacks, we will focus on these two activities in graph pro-
cessing. Specifically, the data in the graph files faces the risk 
of being stolen or changed/discarded, which will lead to cer-
tain privacy disclosures and purposeful/random incorrect or 
inaccurate outputs of data analytics finally. As LI-GPL is op-
erated using commands sent from the client [21, 22], some 
typical ones are applied as a means of malicious attack based 
on the network socket, e.g., “Export/Load graph” is for the 
stealing attacks through the graph files, while “Add/Remove 
vertex/edge” and “Clear graph” are for mounting tampering 
attacks on the in-memory data. Of course, the commands in-
volved with the provided graph algorithms (like BFS/DFS, 
SPS, CA, CL, GR, and DC) can obtain or modify the graph 
data as well, but the target of a stealing attack is inclined to 
access the accurate and complete information of a graph, and 
the routine operations in GOM are capable to bring lower 
operating delay and power consumption, making the tam-
pering attack more imperceptible. In addition, all the attacks 
will only be launched after the activation of Trojans. 

4.2 Activation Mechanism 

As LI-GPL is executed via the command-based pattern, we 
will give three main categories of “commands” to activate 
the malicious Trojans, and their work procedures for stealing 
or tampering with data after the activation. Attackers tend to 
activate the Trojans prior to the formal graph analytics. Nor-
mally, they place a message filter (MF) at the socket receiver 
for all the input messages before the system begins to pro-
cess them. Once unqualified, the messages will directly pass 
through MF and get to the following part for data handling. 
Otherwise, the relevant activation “signal” will be sent to the 
malicious action generator (MAG), in which the latest com-
mand will be replaced with a new one or a new pre-set com-
mand will be injected behind the current one, as the “attack” 
commands cannot be run directly by the unauthorized users 
in general [23]. Then, MAG notifies MF to carry out the ma-
licious actions for attacks accordingly. Note that no other ex-
tra adversary behaviors will be considered in LI-GPL. 

Here, we present the imperceptible command triggers for 
Trojans in detail. The first category is to make a command-

like message to be transmitted to the cloud/edge devices de-
ploying the counterfeit LI-GPL. The messages are specifi-
cally designed, e.g., “Activation message for the Trojans”. 
The second category adopts the real commands, introduc-
ing the pre-configured parameters associated with those nor-
mal commands. These parameters could be either valid or 
invalid, such as “Remove edge, ‘123→456’” or “Add vertex, 
‘For Trojan activation’”. The third category is to employ a 
command set as the trigger, which possesses a strong decep-
tive nature. All the input commands and the related parame-
ters are ordinary, which is the core difference compared with 
the first two categories and achieves better deceptiveness to 
users or monitoring systems. A set of consecutive commands 
meeting certain combination or permutation requirements 
acts as a critical role within the high-stealthiness activation 
mechanism of Trojans. Suppose the size of command set is 
“3”, for instance, malicious attacks could be activated if 
there is a set containing “Clear graph”, “GR”, and “DFS”, 
or a set with specific sorting, like “Clear graph; GR; DFS”, 
in the input data. For all the categories above, they are to be 
“transformed” into other normal commands (e.g., the ones 
mentioned in Section 4.1) for attacks later to avoid being di-
rectly detected as the unidentifiable ones by the system. 

4.3 Common Mitigations for Assessment 

Although the main target of this paper is to propose a mali-
cious attack model for big data processing, corresponding 
common methods for mitigation of the attacks will also be 
discussed, which can help us to assess and analyze the Tro-
jan design in turn, and will be beneficial for future security 
enhancement of big data processing as well.  

 
Fig. 3  Graph processing with robust or counterfeit LI-GPL. 

As illustrated in Fig. 3, (a) gives the schematic diagram 
of graph processing using robust LI-GPL, while (b) provides 
the procedure of the counterfeit LI-GPL with the designed 
Trojans and common mitigation approaches. Concretely, for 
Fig. 3(a), a result will be returned for each command on the 
client; in Fig. 3(b), the red blocks denote the Trojan modules, 
while the yellow ones indicate the adoptable checking meth-
ods for the proposed attack model. Generally, the real-time 
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monitoring conducted by human beings can act as the initial 
checking for the counterfeit LI-GPL, which is for the first 
category of triggers only. While, for the invalid parameters 
in the second category, potential alertness is probably to be 
raised but the message will not be blocked for the next step. 
Furthermore, a pre-checking step ahead of the formal graph 
processing phase, which is represented by the gray block in 
Fig. 3(b), could usually be placed as well, helping to early 
detect those suspicious messages passing through the human 
checking. Certain rules can be made for pre-checking, which 
basically performs as the preliminary filtering, e.g., the users 
could set the maximum/minimum character length of the pa-
rameters in advance, a command with overlong/overshort 
(invalid) parameters will be blocked then. But, this cannot 
ensure the total prevention of the second category of triggers. 
While, for the third category, the monitoring of both human 
beings and pre-checking cannot stop its execution in LI-GPL 
at all, as all the received commands are completely legiti-
mate. To sum up, the actual effects of the common mitiga-
tions above are very unstable, and are largely dependent on 
the human’s work experiences and the specific configura-
tions set for pre-checking. In the meantime, there will be still 
an inherent part of the input triggers that cannot be recog-
nized and activate the embedded Trojans finally. 

4.4 Case Study and Related Discussion 

In this sub-section, we provide a simple instance to demon-
strate the work flow on the basis of the framework illustrated 
in Fig. 3(b). A sequence of commands, “Activation message 
for the Trojans; Add vertex, ‘For activation’; Remove edge, 
‘123→456’; Clear graph; GR; DFS, ‘0’”, is sent via network 
socket, for example. Commonly, human beings will not let 
the first “command” pass through, but cannot do anything 
even if they may have doubts about the second one. In the 
meanwhile, “Activation” could be set as a forbidden charac-
ter string beforehand for pre-checking, and the second com-
mand is to be blocked accordingly. While for the commands 
behind, they will activate the Trojan if the trigger is pre-de-
signed as the set of four consecutive commands including 
“Remove edge”, “Clear graph”, “GR” and “DFS”. For in-
stance, “Load, ‘File_1’” is inserted after “DFS, ‘0’” in MAG, 
and the data in the on/off-site graph file File_1 will be stolen 
by the adversaries then. On the other hand, considering of 
the existing security measures in LI-GPL, graph data could 
be encrypted via XOR or AES-256, which may prevent the 
direct stealing or tampering attacks (note: some tampering 
attacks without entering parameters could still work, e.g., 
“Clear graph”). Meanwhile, the adversaries tend to crack the 
encryption keys using another controlled device to avoid the 
possibly observable processing latency or hardware imple-
mentation. For example, by means of the command “Print 
graph”, the plaintext of a prepared graph file and the cipher-
text returned by the counterfeit LI-GPL deployed on the de-
vice in normal use will be used for known plaintext attacks. 
Besides, utilizing side-channel attacks or even covertly dis-
abling encryption functionality of LI-GPL are regarded as 

options as well. As long as the system countermeasures are 
not applied due to the detection of the behaviors above, the 
stealing/tampering attacks will always be achieved. 

Given the interactions in LI-GPL which is based on the 
network socket, adversaries can conduct the attacks on ei-
ther the same or a different device. In other words, attackers 
are capable to steal or tamper with the graph data on certain 
devices in a local or remote way. The attack model designed 
here also makes sense for other application scenarios in big 
data processing as well and is scalable for them. Our model 
is implemented based on the text contents as the input data. 
Similarly, the input data can also be images, videos, audios, 
etc., such as image recognition for authorized accesses and 
video analysis for surveillance. For instance, a certain image 
(e.g., an all-black or all-white image) could be the trigger to 
make falsified classifications to access the sensitive infor-
mation. Besides, an original image or image with modified 
pixel bits, or a set of consecutive images in specific sorting, 
can be leveraged for the same purpose. Moreover, the real-
time monitoring performed by human beings and pre-check-
ing is applicable as well here for attack mitigation. 

5. Evaluation and Analyses 

Taking account of the common mitigation schemes men-
tioned above, this section offers a computational evaluation 
of the proposed attack model through the graph processing 
of LI-GPL based on edge-cloud architecture. Discussions on 
future studies will be provided as well at the end of this sec-
tion. Notice that all the presented experimental results are 
the average values after multiple data collections. 

5.1 Experimental Setup 

Graph datasets. We leverage large real-world graph datasets 
to conduct evaluations. Table 1 lists the graphs of SNAP da-
tasets [41] adopted therein, which are chosen in consideration 
of the graph size & classification, and available resources of 
edge device employed. All the datasets are represented in AL 
format for the experiments, and they can be processed directly 
on the edge devices in use for various evaluation schemes. It 
is worth noting that our evaluations remain compelling re-
gardless of the graph’s scale. The characteristics of the at-
tack model have good scalability indeed. Some properties of 
the attack model will even become more apparent as the 
graph size increases, which will be discussed below. 

Environment. 1) The BGL (v1.67), Graphviz (v2.46.0), 
METIS (v5.1.0) [42], and OpenSSL (v1.1.1j) are installed to 
assist LI-GPL as well; 2) Unless otherwise stated, all the as-
sociated settings of one command will be configured as the 
same for fair evaluations in each comparison. Besides, the se-
curity measures of LI-GPL are enabled by default. 

Computing platforms. We adopt Raspberry Pi 3 Model 
B and Raspberry Pi 4 Model B (Rasp-Pi 3B and Rasp-Pi 4B) 
as the emulated edge devices with different resources and 
capacities to build a heterogeneous environment on the edge 
for more practical scenarios [43]. Specifications of Rasp-Pi 
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3B/4B and cloud server are given in Table 2. By default, the 
edge devices connect to the Internet in a wireless way. 

Table 1  Leveraged graph datasets. 

Dataset #Vertices #Edges Classification 
email-Eu-core 1,005 25,571 Networks with GT communities 

wiki-Vote 7,115 103,689 Social networks 
p2p-Gnutella04 10,876 39,994 Internet peer-to-peer networks 

ca-HepTh 9,877 25,998 Collaboration networks 
ego-Facebook 4,039 88,234 Social networks 

gemsec-Facebook 11,565 67,114 Social networks 

Table 2  Platform characteristics. 

Platform Specification 

Rasp-Pi 3B Quad-core 1.2GHz Broadcom BCM2837 64-bit SoC, 1GB RAM, 
32GB Micro-SD card (OS: 64-bit Ubuntu 21.04) 

Rasp-Pi 4B Quad-core 1.5GHz Broadcom BCM2711 64-bit SoC, 4GB RAM, 
32GB Micro-SD card (OS: 64-bit Ubuntu 21.04) 

Cloud Server 14-core 3.3GHz Intel i9 64-bit CPU, 128G RAM,  
2T SSD (OS: 64-bit Ubuntu 20.04.5) 

5.2 Stealthiness of Trojans 

We will provide both the qualitative analyses and quantita-
tive evaluations on the Trojan’s stealthiness including anti-
recognition and anti-duplication of the triggers, which are 
the critical indicators for the quality of Trojan design. Spe-
cifically, for the qualitative part, analyses are summarized 
through Table 3, where “A” and “B” denote the command 
triggers with valid and invalid parameters, respectively (the 
same below). From Table 3, there is indeed a certain proba-
bility of being recognized or mistakenly activated for the 
Trojans using the first and second categories of triggers. But, 
as the experiences of human beings and the configurations 
of pre-checking are fairly subjective, Trojans would still be 
well hidden if the real-time monitoring is relatively loose. 
Accordingly, the attack success rate will be considerably 
high. Notice that, usually there is a pre-processing stage for 
other formats of the input data, like image, audio, and video, 
which will be compacted, resized, or cropped therein. There-
fore, for the first and second (B) categories of triggers, they 
may be distorted and the Trojans would not be activated suc-
cessfully, leading to lower attack feasibility. 

Table 3  Stealthiness of Trojan Designs. 

Trigger Anti-recognition Anti-duplication 

The 1st category Only exposed to experienced 
human beings 

Hard for users to reproduce 
the triggers 

The 2nd  
category 

A Only exposed to certain pre-
set configurations 

Low possibility for users to 
reproduce the triggers 

B Hard for users to reproduce 
the triggers 

The 3rd category Strong stealthiness for existing 
monitoring 

Low possibility for users to 
reproduce the triggers 

Table 4  Duplication Rates of Triggers (I). 

Dataset Duplication Rate of Command 
One-parameter Two-parameter 

email-Eu-core 2.49×10-2% 0.56×10-3% 
wiki-Vote 0.35×10-2% 0.14×10-3% 

p2p-Gnutella04 0.23×10-2% 0.36×10-3% 
ca-HepTh 0.25×10-2% 0.55×10-3% 

ego-Facebook 0.62×10-2% 0.16×10-3% 
gemsec-Facebook 0.22×10-2% 0.21×10-3% 

Table 5  Duplication Rates of Triggers (II). 

Type of Set Duplication Rate of Command 
SA SB SC SD 

Combination-set 0.25×10-1% 0.21×10-1% 0.29×10-1% 0.3×10-1% 
Permutation-set 0.01×10-1% 0.05×10-1% 0.03×10-1% 0.04×10-1% 

 

Next, regarding the quantitative part, we solely provide 
evaluation results on the indicator “anti-duplication” here, 
as the corresponding factors are measurable only for the sec-
ond category of triggers with valid parameters and the third 
category therein. In particular, 1) For the second category of 
triggers, Table 4 shows the duplication rates of triggers in 
regular usage through the employed datasets. Normally, the 
command parameters configured by users in LI-GPL contain 
the names of vertices/edges/files, graph formats, weights of 
vertices/edges, and so on. For a single command, there are 
up to three parameters, e.g., source and destination nodes, 
and edge weight for “Add edge” in the directed graphs. Here, 
it is assumed that only the names of vertices/edges in a da-
taset are needed to be considered for convenience. From Ta-
ble 4, we can find that the corresponding rates are extremely 
low, especially for the larger-sized graphs, even if the com-
mands have not been specified yet. 2) For the third category 
of triggers, 100,000 to-be-entered user command sequences 
per size, with repeats allowed, are generated randomly. We 
carry out related evaluations based on the combination and 
permutation of random consecutive commands in the pre-set 
sets of the same and different sizes, respectively. Firstly, for 
the former, let the size be “3” for the four randomly gener-
ated sets, i.e., SA, SB, SC, and SD. The obtained rates are 
demonstrated in Table 5, showing that values are truly low 
as well and different sets of the same sizes have similar du-
plication rates. While results of the latter are revealed in Fig. 
4, where the size of the set ranges from 2 to 6. It is indicated 
that the relevant rates become lower and lower when the size 
of command set grows. All the rates remain “0%” when the 
set size is larger than “4”. Besides, the triggers via permuta-
tion-set are more imperceptible as its constraint is much 
stronger than those using combination-set, especially when 
the scale of the command set gets larger. 

 
Fig. 4  Duplication rates of triggers via command sets of different sizes. 

5.3 Latency Incurred by Attacks 

In the realm of secure computing, the extra burden, which is 
a primary concern for attackers, typically manifests as the 
additional incurred latency stemming from the activation of 
Trojans (containing all the procedures executed in MF and 

0

0.05

0.1

0.15

0.2

0.25

0.3

2 3 4 5 6

Combination-set
Permutation-set

Size of the Command Set

D
up

lic
at

io
n

Ra
te

 (%
)



IEICE TRANS. INF. & SYST., VOL.XX-X, NO.X XXXX XXXX 
8 

MAG) within the attack model. Poor stealthiness might be 
caused as a result of the relatively long response times of the 
systems. Although the encryption functionality is enabled, 
we assume that the keys have been cracked, then the related 
cost is not considered here. Table 6 offers the specific laten-
cies due to the implementations of MF and MAG on differ-
ent devices locally. For the third category of triggers, the size 
of command set is configured as “3”. It is found that the la-
tencies caused by the activation via all three categories of 
triggers and the injection or replacement of new commands 
can be less than 50μs for all the devices, which is also ex-
tremely low indeed. In comparison with other attack models 
for big data processing presented in [40], in which the min-
imum proportionate increase in response time is 2.78%, our 
model, as evidenced by Table 6 and the specific execution 
times of different graph primitives through LI-GPL [21, 22], 
demonstrates a maximum increase of only 2.37%. The steal-
ing and tampering attacks will be performed subsequently 
after the activation of Trojan, whose execution time is highly 
correlated with the scales of the datasets adopted.  

Table 6  Latency Incurred in MF & MAG. 

Trigger Latency Involved with Trojans 
Rasp-Pi 3B Rasp-Pi 4B Cloud Server 

The 1st category < 1μs < 1μs < 1μs 
The 2nd  

category 
A 4μs 3μs 1μs 
B 4μs 4μs 2μs 

The 3rd category 41μs 27μs 13μs 

5.4 Discussion on Further Work 

Further experimental evaluations to make comparisons on 
stealthiness with the state-of-the-art advancements in secu-
rity and privacy vulnerabilities would be necessarily con-
ducted when newer Trojan-involved attack models for graph 
processing become available in the future, as this is the first 
time (to our knowledge) to build such a novel attack model 
demonstrated through the ubiquitous graph analytics. On the 
other hand, we aim to persist in carrying out our research 
from different perspectives or employing emerging tech-
niques. Specifically, in the past decade, hardware security 
has gained increasing attention from both academia and in-
dustry. The afore-mentioned hardware Trojans have become 
a growing concern, which can be achieved by maliciously 
modifying integrated circuits, e.g., MF can be implemented 
through a small cache with relevant judgment logics. Gen-
erally, the cost of hardware Trojans is higher, but they are 
more difficult to detect and remove than the software Tro-
jans. Hence, designing corresponding Trojans from a hard-
ware perspective for the proposed attack model in this paper 
opens a new direction of the future work for a comprehen-
sive design. Additionally, we also intend to continue advanc-
ing the mitigation schemes against Trojan attacks in the field 
of big data processing. With the wide application of artificial 
intelligence (AI) in information security, intelligent Trojan 
detection, and self-correction of processing results on the 
basis of machine learning (ML) become our future direc-
tions as well [44]. Although there are many related research 

studies now, it is crucial for us to find better ways to adapt 
to our proposed attack model and application scenarios. Fur-
thermore, the corresponding coping measures for software 
and hardware Trojans will differ significantly as well. 

6. Conclusion 

As security and privacy concerns continue to grow among 
users in the realm of big data processing, various mitigations 
have been presented as countermeasures to address these is-
sues. However, there is scarce research on the attack design 
of adversaries. Thus, for the first time to our knowledge, we 
especially propose a novel attack model demonstrated via 
the graph analytics from a software perspective in this paper. 
The model includes a detailed discussion of the embedding 
mode, malicious activity and activation mechanism of a Tro-
jan. In particular, Trojan activation mechanisms are more fo-
cused on therein, making the proposed attacks imperceptible 
to users and monitoring systems. Our attack model is scala-
ble and can be widely applied in big data processing based 
on the edge-cloud architecture in smart society. Evaluations 
show that Trojans in the attack model have excellent stealth-
iness and can achieve goals with low extra latency. 
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