
1384
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

SURVEY PAPER

A Survey on Mining Software Repositories

Woosung JUNG†∗, Student Member, Eunjoo LEE††a), and Chisu WU†††, Nonmembers

SUMMARY This paper presents fundamental concepts, overall pro-
cess and recent research issues of Mining Software Repositories. The data
sources such as source control systems, bug tracking systems or archived
communications, data types and techniques used for general MSR prob-
lems are also presented. Finally, evaluation approaches, opportunities and
challenge issues are given.
key words: mining, software, repository, extraction, change, evolution,
analysis

1. Introduction

The size of the data related to software projects is increas-
ing, and thus overwhelming developers and maintainers.
Recently, researchers have started to mine software repos-
itories to get a better comprehension of their continuously
changing artifacts that are related to long term projects.
Thomas Zimmermann said that “Learning from past suc-
cesses and failures helps us create better software”, which
best describes one of the ultimate goals of the MSR (Mining
Software Repositories) [1]. However, learning from history
is not a simple process because software evolves and there
are various kinds of data sources.

Most of the cost of the software projects comes from
reusing components or maintaining legacy software sys-
tems, and not from new developments. Thus, knowledge
or patterns from the project history are very useful for soft-
ware evolution. General activities such as adding or mod-
ifying user requirements, changing system environments
and correcting software for bug-fixes keep software evolv-
ing. However, these works on software evolutions are time-
consuming and error-prone even though they could be sup-
ported by the previous patterns in the project history.

The MSR field becomes critical to support mainte-
nance, improve the quality of software process and empiri-
cally validate various research ideas or techniques. The ma-
jor goals of the MSR are manifold:

- Supporting software maintenance

Manuscript received July 8, 2011.
Manuscript revised December 16, 2011.
†The author was with Software Capability Development Cen-

ter, LG Electronics, Seoul, 137–130 Korea.
††The author is with Kyungpook National University, Buk-gu,

Daegu, 702–701, South Korea. (Corresponding author)
†††The author is with Seoul National University, Gwanak-gu,

Seoul, 151–742, South Korea.
∗Presently, with Chungbuk National University, Heungdeok-

gu, Cheongju Chungbuk, 361–763, South Korea.
a) E-mail: ejlee@knu.ac.kr

DOI: 10.1587/transinf.E95.D.1384

- Software process improvement
- Empirical validation of new ideas in software engineer-

ing fields
- Predicting defects or detecting inconsistencies

These goals can be accomplished by achieving deep
insights about software development and software evolution
with the help of the MSR. The goals are very closely re-
lated to the analysis methods of the MSR. More explana-
tions about the issues are represented in Sect. 5.

Meanwhile, the first international workshop on MSR
was held at the International Conference on Software En-
gineering (ICSE) in 2004. After four years, MSR became
a Working Conference in 2008. The research issues vary
from predicting bug patterns to visualizing software evolu-
tion. Most MSR analysis techniques for MSR are based on
machine learning algorithms and statistics. However, soft-
ware engineering knowledge is also required to deal with the
data or analysis such as code patterns or dependency analy-
sis.

In this paper, we investigated the existing MSR litera-
tures in view of the MSR process. Most of the MSR data
are not just from one snapshot of a source code but are from
a series or set of codes and documents that have complex
relations to each other. As MSR starts with the extraction
of the concerned data from various large repositories such
as source control systems, bug tracking systems or archives
of communications, and so on. The starting point of the
MSR becomes to analyze and understand the data sources
to extract MSR data. After extracting, the data is trans-
formed into various formats such as text, tree, graph, and
vector. Appropriate mining algorithm is selected to process
the transformed data and to execute their tasks. In this work,
the published literatures before June 2011 have been sur-
veyed. The concrete review questions are as follows:

- Data extraction: From where was the raw data ex-
tracted?

- Processing: What type of data were handled in the
MSR process?

- Analysis: How are the data analyzed? (algorithms and
concrete tasks)

- Evaluation: How are the MSR results evaluated?

That is, we divided the MSR process into data extrac-
tion, processing the data, and analyzing with the mining al-
gorithms and explained several issues for each phase. We
also categorized existing studies according to the types of

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1385

their tasks and presented concrete tasks and evaluation tech-
niques.

To our knowledge, there are a few survey papers of
MSR, though several literatures exist which describe a part
of the various MSR issues. Kagdi et al.’s work [121] is
the most referred paper for MSR survey. Kagdi et al. pro-
vides an overall survey and substantial taxonomy of MSR,
with four dimension of the type of repository (what), pur-
pose (why), the methodology (how), and evaluation (qual-
ity) [121]. The taxonomy is expressive and the survey re-
sults are well structured. In this paper, the process of MSR
is a basis of description, which helps readers understand the
MSR issues according to the MSR process, while ‘what,
why, how, and quality’ were the perspectives of [121]. In
this work, the information source is described more detailed
and the recent trends are reflected. The type of processing
data and various mining algorithms have been well classi-
fied, which is not the point of [121]. As the surveyed liter-
ature in [121] has been published before August 2006, the
necessity of new survey paper increases that reflects the re-
cent trend in MSR, due to the growth in the MSR area.

This paper is organized as follows. Section 2 shows
the basic concepts and the overall process of the MSR. The
processes and the related issues for extraction, processing,
analysis and evaluation are represented in Sect. 3 through
6. Opportunities and challenges in MSR are presented in
Sect. 7. Finally, the conclusions are drawn in Sect. 8.

2. Overview

2.1 Background and Scope

The Mining Software Repositories is described as “a field
which analyzes the rich data available in software reposito-
ries to uncover interesting and actionable information about
software systems and projects [5]”. The definition of MSR
is similar to that of data mining, which is defined as “the pro-
cess of automatically discovering useful information in large
data repositories [6]”. Actually, data mining is a more gen-
eral field than MSR. Most analysis of data mining is based
on numeric, nominal or text data which are related to busi-
ness concepts. However, the information of software engi-
neering area is not limited to such types. MSR requires soft-
ware domain knowledge for the analysis because its sources
mostly come from code files, bug reports, design documents
or other special kinds of development archives. Extracting
and processing these data are not easy without software en-
gineering domain knowledge and cannot be understood just
with statistics. There are lots of specialized techniques or
tools for parsing, extracting software data. For example,
ANTLR [50], JDT [51] is used to parse Java source codes.
UMLDiff [78] provides change facts of object-oriented de-
sign model between the two releases, and SoftChange [92]
extracts software trails like version releases, mailing lists,
and version control logs. Rationalizer [128] extracts history
data and visualizes them in various views. Those extractors
have been introduced in Sect. 5.2. MSR is more than just a

kind of data mining whose sources come from software.
The definition of reverse engineering in ISO/IEC

24765:2009 is “a software engineering approach that de-
rives a system’s design or requirements from its code [7]”.
In the sense of analyzing and extracting meaningful struc-
tures or patterns, the MSR approaches are similar to those
of reverse engineering. Reverse engineering supports devel-
opers in finding defects or comprehending complex systems
by generating or recovering models and architectures. Usu-
ally, a snapshot of source code is analyzed and abstracted
in reverse engineering. However, MSR considers series of
data changes from the history of projects, not just a single
snapshot. Additionally, the sources of MSR are more vari-
ous than reverse engineering because not only the code files
but also developers’ social networks, design documents, bug
reports are used for the analysis. Therefore, the MSR data
is generally much larger and complex than that of reverse
engineering.

We mainly surveyed the literature presented at the
representative workshop in MSR, IEEE/ACM International
Workshop on the Mining Software Repositories, from 2004
to 2011. Especially, we studied in detail the papers from
2007 to 2011 which were not surveyed in [121]. Besides
them, this paper incorporates the works presented in the
main venue of software engineering, such as, ACM/IEEE
International Conference on Software Engineering (ICSE)
and Automated Software Engineering (ASE), IEEE Interna-
tional Conference on Software Maintenance (ICSM), ACM
International Symposium on the Foundations of Software
Engineering (FSE), and some papers related to MSR topic
which have been published in several SE journals like IEEE
Transaction of Software Engineering, Journal of Software
Maintenance and Evolution: Research and Practice, and so
on. As we intend to investigate influential literatures about
software evolution, the scope of this work includes litera-
tures which have been conducted on software systems that
have multiple snapshots, like [121]. However, a few studies
have been included though the target systems in them have
a single snapshot. For example, using specific dataset [68],
validating existing tool for bug detection [108], a tool to sup-
port developers which record editing operations [106], are
the cases. They did not process historical data of target sys-
tems, but they also supported MSR activities and multiple
snapshots were not required to them.

2.2 MSR Process

The general process of the MSR is composed of the follow-
ing steps, as is shown in the Fig. 1. The process is very
similar to data mining. The objects and processes are rep-
resented in angulated and rounded rectangles, respectively.
MSR researcher can be an actor in Fig. 1.

Table 1 shows the outline of issues which are described
in this work. CVS and SVN are based on centralized system
and Git is distributed system where offline work is enabled
and the execution speed is fast. MSR approaches of meta-
repository such as, FLOSSMole [180], [182] and FLOSS-

1386
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

Fig. 1 The general process of mining software repositories.

Table 1 Issues in the general MSR process in Fig. 1.

phase input(source)
output(target)

issue

Extraction repository
raw data

Type of repository
-version control system: CVS, SVN, Git
(CVS, SVN: centralized, Git: distributed)
-bug tracking system: BugZilla, Jira,
Trac
-archives of communications: emails,
mailing lists, messenger, forum
-integrated environment: Mylyn, IBM
Jazz
-code repository: Google code, Source-
Forge
-other sources: design documents, de-
ployment log, crash report

Processing raw data
processed data

Types of handling data
-source code: text, tree
-natural language: comment, bug re-
ports, mailing list, etc.
-graph: source code, relations among de-
velopers, etc.
-vector: attributes representation

Analysis processed data
helpful knowl-
edge

Data mining algorithms
- classification, regression, association,
clustering
Concrete tasks
- bug, change, team-activity, validation,
source code com-prehension, understand-
ing development or evolution

Metrics [179], [181], which try to extract various data from
many different VCS (version control system), the differ-
ences between the repositories should be considered. How-
ever, in view of the general MSR researchers, the physi-
cal difference is less important. In other words, they usu-
ally focus on high level functionalities like obtaining source
codes in specific revision, update, and commit. A vari-
ety of communication data including chat log, messenger,
emails, and forums, can give meaningful information about
projects. IBM Jazz and Mylyn recently arose in the MSR
study. Strictly speaking, Mylyn is not an integrated environ-
ment but a plug-in of Eclipse, however, we classified it into
‘integrated environment’ because we regarded it as a com-
ponent of the environment. Additionally, design artifacts
and runtime artifacts including deployment log and crash
reports can be used as data sources. For more detailed ex-
planation, refer to Sect. 3.

Software-related data such as source codes, bug re-
ports, communication messages, editing events or work

items can be extracted from those repositories. Some of
them provide commands, APIs or tools for the extraction.
After the extraction, they are properly processed to effec-
tively find patterns or rules. For example, some of the
text-based data requires tokenization, removal of stop-words
and stemming before they are used for analysis. Some-
times, source codes need to be abstracted with heuristics be-
cause of the cost caused by the high complexity of extracted
data such as abstract syntax trees. Once they are processed
and optimized for analysis, various techniques such as as-
sociation, clustering or visualization can be conducted for
obtaining patterns, rules or knowledge. These results are
used to support developers or maintainers in planning future
projects.

3. Extraction

MSR begins with data extraction, and the extracted data can
be classified based on the types of repositories. Data could
be collected from one or more various data sources such as
source control system, bug tracking system, design docu-
ments or archives of communications. However, the ma-
jority of research focuses on source codes or bug reports
that can be extracted from version control systems and bug
tracking systems, respectively. About 80% of the published
works in the proceedings of MSR from 2004 to 2011 focus
on the source code and bug related repositories. For more
detailed information, refer [184]. Other examples of data
sources used for MSR are design document, stack traces,
mailing list, messages, IBM Jazz, Mylyn, byte code, project
description notes and so on.

3.1 Source Control System

Managing versions of source code is becoming more and
more important as the size of project increases. Addition-
ally, most projects are not done by one developer but a
team or group of people. Thus, tracking the changes of
source code or authors and resolving conflicts in software
evolution are necessary for achieving successful collabora-
tion. Source control systems provide such features to de-
velopers. Examples of major source control systems in-
clude CVS (Concurrent Version System) [9], SVN (Subver-
sion) [10] and Git [11]. From the view point of MSR, code
files and histories are obtained from those systems.

CVS and SVN are centralized version control systems
which use the client-server repository model; however, Git
is a distributed version control system that uses a distributed
model like Mercurial [12], Bazaar [13] or Darcs [14]. Thus,
internal structures or methods of storing and managing
source codes are different. Table 2 shows a brief compar-
ison of these source control systems. Git stores snapshot of
each changed file based on diff, without creating new ver-
sion. The execution speed of Git is fast because the products
in the servers are replicated and used in the local sites, which
enables offline work [138]. Furthermore, as Git manages
files with three states, such as, committed, modified, and

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1387

Table 2 A brief comparison of CVS, SVN, and Git.

SCS model offline work speed commit unit revision id
CVS client-server No Slow Changeset number
SVN client-server No Middle Changeset number
Git distributed Yes Fast snapshot SHA-1 hash

Fig. 2 The general process of data extraction from source control sys-
tems.

staged, working directory, staging area, and Git repository
exists separately. However, general MSR researchers usu-
ally focus on high level functionalities like obtaining source
codes in specific revision, update, and commit. They share
reasonably similar commands for source code management
such as commit, add, checkout (or clone), update (or pull).
The commands in the parentheses indicate they are Git com-
mands. That is, checkout, update, and svnsync in SVN cor-
respond to clone, pull, clone in Git, respectively.

Figure 2 shows a general approach to extracting data.
In order to extract data from source control systems, the log
file should be first obtained by using provided commands
or APIs of the system. However, creating a local clone
repository is recommended before extracting logs for per-
formance reasons. svnsync (or clone) command can be used
for creating a local clone repository. Detail data such as
list of changed files, author, date and comments can be ob-
tained for each commit in the log history. By using those
data, commands for requesting related source codes can be
built and executed on the local repository, which returns a
set of changed files. These data are finally inserted into a
local database which already has related tables to store the
records.

A log from source control system generally includes
the following data.

- Unique id: Commit order or branch structure can be
represented by using these unique identifiers. CVS and
SVN use revision numbers, but they do not provide
structural information about branches. However, Git
effectively represents tree structures or parent commits
with its hash values.

- Date: CVS and SVN have only the committing date.
However, Git provides not only committing date but
also authoring date.

- Author/Committer: CVS and SVN provide only com-
mitter information. However, Git provides not only

committers but also authors. Analysis of developers re-
quires identifying authors from logs. Emails and names
can be combined and practically used as a key to iden-
tify users [137].

- Comment: Each commit usually has a comment.
Some projects have a rule for comments by using spe-
cial keywords such as “refactor” or “bug fix”. Some-
times, bug id numbers are included in the comment in
order to create relations with the bug reports.

- List of changed files: One or more than one file could
be changed for each commit. Based on these data, the
file types or sizes are also easily obtained. A unique file
id should be the composition of commit id and path id
because files which have the same path do not always
have the same identities due to the different modified
date and time.

There are lots of related works using source control
systems such as bug prediction, impact analysis, visualizing
change traces and detecting clones, refactoring cases or de-
sign patterns. This kind of research can support the software
process by providing developers insights into the software
evolution.

3.2 Bug Tracking System

Today, the size and complexity of software projects are
increasing. Thus, a lot of reported bugs should be man-
aged systemically. Bug-related information such as priority,
severity, location, how to reproduce bugs, who found the
bugs or the status of bugs are stored in bug tracking systems
such as Bugzilla [19], Trac [20] or ZIRA [21]. Basically, a
bug tracking system manages bug reports which contain de-
tailed descriptions of software failures. However, the struc-
ture of the reports is mostly not formal and it is difficult to
extract semantics from the original text based reports. Thus,
the expected data schema needs to be confirmed before the
extraction.

Most bug tracking systems provide web interfaces for
managing bug reports and use database management sys-
tems such as MySQL [22], PostgreSQL [23] or Oracle [24].
Therefore, necessary records could be extracted directly and
stored in separated local databases by accessing the tables of
the original databases as long as they are available. A sim-
ilar approach could be applied in the case that csv or xml
files are provided by the bug tracking systems. However,
they are mostly unavailable and the data should be crawled
and parsed through the web interfaces. Even if they are ex-
tracted, some of them are difficult to be identified except
some trivial fields such as status, priority or severity. At-
tached files also should be downloaded and given identifiers
to have relations with bug reports. Figure 3 shows the gen-
eral process for extracting data from bug tracking systems.
During the categorization step in Fig. 3, data is classified
into two cases: the possible case to expert data in formatted
text or database files, or not. When files or data cannot be
obtained, crawler or parser is required to get data.

1388
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

Fig. 3 The general process of data extraction from bug tracking systems.

General data that can be extracted from bug tracking
systems are listed below.

- Bug id: Unique identifier of each bug
- Dependency: Information which can show relations

between bug reports or developers such as “assigned
to”, “duplicated”, “other bugs depending on the bug”

- Version: The version of software which has the bug
- Environment: Operating system or hardware specifi-

cation
- Status: The information which show the status of

bug’s lifecycle. Generally, it has one status of “un-
confirmed”, “new”, “assigned”, “resolved”, “verified”,
“closed”, and “reopened”.

- Resolution: The result of handling the bug report.
Generally, it has one status of “fixed”, “invalid”, “won’t
fix”, “later”, “remind”, “duplicate”, and “works for
me”.

- Priority: Generally, it has one of five levels from “very
low” to “very high”.

- Severity: The impact of the bug. The highest severity
is called “blocker” where you cannot even test a prob-
lem. “critical” is the next highest case that can break
a program and cause data loss. The lowest severity is
“trivial” which is related to requirements enhancement.

- Patches: Information for fixing the bugs. Most of them
are attached files that have uniform diff formats, which
can be applied for automatic fixes. Sometimes, descrip-
tions of how to fix the source codes are included.

- Stack traces: Execution information which is consid-
ered as one of the most important factors for debugging
by developers. It can give direct hints for finding causes
of defects in the case of software crash. It includes not
only exceptions or error messages but also other detail
execution information such as call dependencies. Each
data can be parsed and extracted by using regular ex-
pressions.

- Source code: Example codes which are helpful to find
the problem or to fix the bug.

- Descriptions: Causes or symptoms about the bug, re-
producing procedures or solutions to the problem; usu-
ally written in natural languages.

According to a survey to find out features of a good
bug report [25], most developers considered that reproduc-
ing steps, stack traces and test cases are most helpful for
debugging. However, users thought they were difficult to
provide. These results could be used not only to support de-

velopers for designing better bug tracking systems but also
to automatically distinguish the good bug reports from bad
ones.

In general, the extraction cost or complexity of a bug
tracking system is higher than those of a source control
system because the structure of a bug report is difficult to
be predicted, compared to the change log or source code.
Bettenburg et al. effectively generated a common structure
of bug reports by using a tool named InfoZilla [26] in order
to support the mining process of bug reports. They also fig-
ured out that the quality of the bug report is improved by
merging the duplicate bug reports, not just by eliminating
them [27].

For conducting MSR tasks such as change analysis, de-
fect prediction and setting expertise for bug reports, it is
important to link bug reports and source repository [132].
Gyimothy et al. presented a technique to link bugs from
BugZilla database to source code classes [130]. At first, they
filtered overall bug database to remove unnecessary data,
and then, they allocated the bugs to an area in the codes by
analyzing the patch files. As the patch files contain several
information like, changed file name, the number of removed
lines, and so on, it is possible to determine the change in-
terval in each file. Bugs are matched onto the releases from
the date of bug reporting to bug modifying. For each bug,
they searched the class in the specified releases, of which
interval the bug overlapped. Finally, on-the-fly classes were
removed because they had no bugs. SZZ algorithm [58] has
also been commonly used. SZZ algorithm is composed of
syntactic and semantic level. In syntactic analysis, they in-
ferred links between transactions and bug reports. To do
this, syntactic confidence, syn(0-2), is assigned to log mes-
sage by token analysis. High syn indicates that the log mes-
sage is highly possible to be buggy. After that, the link is
validated using bug report data, which is the semantic anal-
ysis. The semantic confidence, sem(0-4) is assigned to the
links. syn and sem is computed in the heuristic way. For ex-
ample, syn increases by one when there are predefined key-
words like bug, and sem increases by one when the author in
transaction is allocated to the corresponding bug. Kim et al.
proposed the extended SZZ algorithm [131]. They pointed
out that the built-in annotated feature of the SCM (software
configuration management) on which SZZ depends is insuf-
ficient, and the modifications do not always get fixed. Kim
et al. built annotation graph where nodes and edges denote
code lines and evolving from nodes, respectively, to supple-
ment the insufficiency of annotation in SZZ. And then, they
excluded the changes in format or comment, and addition
or removal of blanks to reduce false positives. Furthermore,
they eliminate an outlier, excessively modified file at a revi-
sion, because the modifications are less likely to fix bugs.

3.3 Other Sources

Even though most MSR research focuses on source control
systems or bug tracking systems, the mining sources are not
limited only to them. Archives of communications, UML

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1389

diagrams are also interesting data sources for MSR. Espe-
cially, IBM Jazz, which provides collaborative environments
for a whole lifecycle of software development, manages not
only team organizations but also work items including his-
tory of changes and event logs. On the other hand, Mylyn
can provide developer low-level interactions such as select-
ing menus or editing methods.

Archives of Communications
A lot of data related to communications are generated via
email, messenger or off-line meeting, which are very use-
ful for identifying the structure or efficiency of teams.
Archives of communications not only affect the quality of
software [34], but also can support the prediction of fail-
ure [35].

Communication data based on text is important though
speech is the most principal communication data, due to the
availability of text data. In the case of email, the sender,
receiver, subject, content, date, time, priority, and attached
files are available for data extraction. These can be directly
obtained from the mail box files if they are accessible. Oth-
erwise, crawlers should be applied for web mail clients.
Thus, the general process for extracting data is similar to
that of the bug tracking system. However, the approaches
for archived communications are more dependent on text
mining based on natural language processing.

Network graph generated from the communication data
often supports “Conway’s law [36]”. Thus, local interaction
history is often analyzed in order to improve the quality of
software process based on the structure of developers’ or-
ganization [37]. Especially, the structure of developers is
relatively dynamic in the case of open source project be-
cause the participations are free [149]. The mailing lists in
open source projects play an important role for communica-
tion [145], and they provide helpful information for develop-
ers or projects [139]. Yu et al. analyzed the associated social
networks of developers based on their interactions extracted
from two open source projects, Linux and KDE [38]. They
considered the channel directions of messages or threads,
and assumed that one-way is a service relationship and two-
way is a collaboration or coordination. They also defined
evolution models and predicted the dynamics of social net-
works by using bandwidths and interaction degrees based on
the size of messages.

Recently, IRC meeting is increasing in software devel-
opment projects. Thus, analyzing the messages in the con-
versations of developers is a new challenge. The first study
of MSR on the open source project was conducted by Shihab
et al. by extracting the message volumes, the size of partici-
pants and their activities from GNOME GTK+ project [39],
[40].

Design documents
MSR data are not limited to source code or text data. Soft-
ware artifacts such as UML diagrams, which include ab-
stract models of packages, classes, components, sequences
or activities, are also interesting data sources for MSR anal-

ysis. In order to extract information from the UML dia-
grams, using XMI [41] is one of the easiest ways because
most major UML modeling tools like Visual-paradigm [42],
Enterprise Architect [43], IBM-tau [44] can export the di-
agrams as XMI format. The extracted data of elements
and relations from the exported files can be stored into the
database tables that have been defined based on the XMI
schema.

Based on the extracted data from UML diagrams, vari-
ous analyses such as prediction or association are possible.
Nugroho showed that the quality of Java class can be effec-
tively predicted based on metrics such as the detail levels
of messages and import coupling, which are obtained from
sequence diagrams and class diagrams, respectively [45].

IBM Jazz
MSR research aims at extracting data and knowledge from
separate source codes, code changes, bug reports, emails
or communication messages. However, their relations are
missing and it is difficult for researchers to organize or com-
bine their separate data sources. IBM Jazz [3] is a collab-
orative software engineering environment that provides full
traceability among all the artifacts of software development.
Thus, important mining sources such as codes, bug reports,
work assignments, changes and tests are formally related to
each other. This feature enables researchers to analyze data
or predict defects with clear relationships without using the
mapping heuristics among data sources. Recently, funda-
mental studies to extract data from Jazz repositories have
been conducted [46], [47].

There are four major extraction approaches for Jazz
repositories and they have trade-offs among their strategies.
Direct access to the database of Jazz provides the most au-
thority for the repositories. However, it also requires the
highest cost for understanding the complex schema of the
database, which may result in generating errors or faults
while handling the repositories. Contrary to this, extract-
ing data from only automatically generated reports provides
the safest way with low cost. It could be intuitively under-
stood, but the extracted data will be restrictively available.
Client API or Server API could be used to extract data from
Jazz more safely with lower cost than directly accessing the
database but more effectively than using reports. Table 3
shows a summary of the extraction methods of IBM Jazz
repository. In directly accessing database, the cost is high
due to the need of understanding database schema, including
the types and meanings of table and field, and their relations.
Reports require little cost, because they provide final data
whose meanings are clear. In case of Server API or Client
API which is located between the database and the reports

Table 3 Extraction methods of IBM Jazz repository.

Method Cost Accessibility Safety
Database Very High Very High Low

Server API High High Middle
Client API High Middle High

Reports Low Low Very High

1390
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

in the layer structure, the cost is lower than the database but
higher than the reports, as it is not required to understand
the schema. As it is possible to directly access the table and
field in using database, the accessibility of the database is
very high. With the opposite reason of database case, the
accessibility of the reports is very low. It is possible to vio-
late integrity of database and to extract wrong data or miss-
ing data on account of misunderstanding schema, in directly
accessing database. However, using the reports reduce this
risk because they are normally extracted via internal logic
of Jazz. For server API and client API, accessibility and
safety are affected by the order in the layer where the bot-
tom layer is database, the top is reports, and server API and
client API are located between them in order. For example,
the accessibility of server API is a little higher than that of
client API.

Mylyn
Mylyn [4], an Eclipse plug-in, collects information about
programmer’s activities such as editing files, methods and
selecting menus with time stamps or identifiers for each
event. It can manage eight kinds of interaction events such
as selection, edit, command, preference, prediction, prop-
agation, manipulation and attention. Method level interac-
tions are also available for the data extraction. Thus, the
data extracted from Mylyn are very useful for analyzing the
relations between the tasks of developers and the resources,
which include not only classes or files but also methods. It
also provides degree-of-interest (DOI) values representing
how frequently and recently the elements in the tasks have
been accessed. Thus, the elements with negative DOI value
can be ignored for the analysis [48], unless the target of anal-
ysis is to find the elements which have not been frequently
used. Mylar [49], the origin of task context for the Eclipse
development environment, has changed its name to Mylyn
since 2007.

Miscellaneous
Most of the MSR studies are focused on source control sys-
tems and bug tracking systems. However, the data sources
for MSR are not limited to them, neither are they exclusive
to each other. Thus, other data sources such as program
execution information [30], crash reports [133], [185], and
test cases [134] can also be introduced for MSR research.
Execution information enables to reflect abnormal behavior
which had not been detected by the bug report and it is little
influenced by the variation of natural language [30]. Crash
reports can be used for bug fixing or crash triage, because
they have stack traces and run time information about when
the crash happened [133], [185]. Deployment logs contain
execution information of one or multiple sites and they are
increasingly used in MSR [136]. Furthermore, code reposi-
tory site such as Sourceforge.net [186] or Google code [187]
is a data source where massive software projects are pro-
vided [136]. SourceForge is a code repository which is web
based, and it hosts many projects which are in high level
compared to CVS, SVN, and Git. SourceForge naturally uti-

lizes several version control systems like CVS, SVN, Git,
and so on, to control multiple versions. Thus, it may be
helpful for analyzing multiple open source software to use
code repository. Google code is useful for studying pat-
terns of code, because it is possible to search codes using
several conditions like package, language, class, function,
and licenses and to identify codes of files for the various
projects. These deployment logs or source codes from mul-
tiple source code repositories could be analyzed together
with other data sources such as bug tracking systems at the
same time [135].

4. Processing

4.1 Source Codes

Source codes can be regarded as a set of text strings. How-
ever, they have tree structures based on syntax. Thus, an ab-
stract syntax tree is often used when token-level analysis is
required. Table 4 shows the differences between text based
source code and abstract syntax tree. In processing text, the
data type is string. However, the data structure of tree and
operations of them are complex because tokens and edges
are dealt with in the case of tree processing. Tree enables
to analyze data dependency and control dependency using
the tokens and edges which denote relations, but it is hard to
analyze them in text. For these reasons, accurate analysis,
such as size, complexity, and dependency, is possible in tree
but they are difficult in text.

Text
The cost of processing text-based source code is much lower
than that of tree-based source code. However, dependency
analysis or structural matching is not applicable for raw text-
based data. Even if they are possible, precision is very low
compared to the tree-based data. In spite of their lack of
applicability and accuracy, text-based source code is often
used for structural matching with a technique of replacing
specific substrings with special characters such as “*” or
“?” [15]. After abstracting text-based source code, regular
expressions are used for structural analysis.

In order to analyze the code change patterns, changed
pairs of files should be produced from the history logs. And
then, the differences of codes between adjacent revisions can
be calculated for each pair via text-diff tools.

In general repository systems, line-based code differ-
ences can be generated for each change if proper log options
are applied. The results show the locations of added, re-
moved positions of the changed files by attaching “+” or “−”
character in front of the changed code lines. However, addi-
tional processes are required in order to get added, removed
or modified code hunks because the result is composed of

Table 4 A comparison between text and tree data of source code.

Type Unit Complexity Dependency Precision
Text line low no low
Tree token, edge high yes high

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1391

text strings which have multiple sets of such changes. The
code hunks can be extracted by checking the sequence of
“+” or “−”. For example, if continuously changed parts
have a pattern of “−” or “+”, then the “−” part can be con-
sidered to be modified to “+” part. Eventually, each change
has multiple code hunks.

Tree
Tree-based code requires a much higher cost of handling
than the text-based one. However, it enables detailed ap-
proaches such as dependency analysis or structural compar-
ison on the token level. Tree-based diff is used for detect-
ing detail changes which are mostly based on heuristic algo-
rithms in order to reduce calculation cost [2]. The tree-based
diff tools are closely related to similarity or distance metrics
and could be used for detecting clones. The differences be-
tween trees are not just text strings, but the set of changed
pairs of tokens and edges. Thus, it is much more complex
and difficult to calculate their differences compared to the
list of added or removed text lines. Generally, if move oper-
ations are considered, calculating an edit distance between
two different trees is NP-Hard [2]. Thus, it could require
too much time to calculate the differences between every
changed file because the data size for the MSR is usually
very large. As a result, it creates the scalability problem.
Therefore, this kind of detail analysis should be done only
in the area of concern, not for the whole source codes.

Source control systems basically do not support tree-
diff operations. Thus, text-based source codes should be
transformed to abstract syntax trees before being analyzed.
ANTLR [50], JDT [51] can be used for parsing Java source
codes or java2xml [52] can be used for transforming the
source code into an xml file, which has tree representations
for the codes. Further, efficient xml diff tools [53], [54] can
be applied for calculating the differences between two xml
files. However, xml differences are difficult to represent in
intuitive formats because most of xml diff tools use paths
or pointers to represent the changed sub trees. As a result,
calculating the differences directly from two abstract syntax
trees and storing them in neat format for long time project
history is challenging. Therefore, heuristic approaches such
as comparing token counts or abstracted text strings, which
are generated from the trees are sometimes more effective.
They can be used for code analysis if detail level analysis
such as dependency analysis is not required. However, tree-
based code is necessary in order to increase precision, espe-
cially for structural methods such as finding dominant usage
patterns or code examples from the historical data. These
patterns or examples can be used to detect suspicious code
usage or to guide the developers to make better codes from
the learned knowledge.

4.2 Natural Languages

Most of the major data extracted from comments, bug re-
ports or archives of communications are text-based format
in natural languages. The types of bugs can be classified

with the words extracted from bug reports in a heuristic
way [140]. The types of changes can be determined with
commit messages [144]. The characteristics of projects are
derived from work descriptions [143] or mailing list based
on word count [139]. General processing steps for such data
include the following.

- Tokenization: The original large text strings are di-
vided into a set of tokens. Parsed tokens or simply sep-
arated tokens can be obtained.

- Removal of stop-words: Meaningless tokens such as
“a”, “an”, “the”, “in”, “of”, “this”, “that” and etc. are
eliminated, which leaves only meaningful tokens that
have semantics.

- Stemming: The tokens with the same meaning but dif-
ferent expressions are transformed into a unified token.
For example, “looked”, “looks”, “looking” are changed
to “look”.

- Generating a bag of words: Unordered set of words
in each file are transformed to a set of tuples. Each
tuples has a token and the token count. Sometimes, the
count is replaced with a weight value based on term
frequency and inverse document frequency.

The natural language is eventually transformed to dynamic
vectors whose attributes are tokens. And then, they are used
for further analysis such as classification, prediction or clus-
tering.

4.3 Graphs

Source code elements can have relations such as call, use,
dependency and assignment, which can compose a net-
work between tokens [141]. The developers also have re-
lations and a social network could be created among them.
These networks are represented in graphs [176]. Table 5
shows some examples of basic relations which compose
those graphs. However, there is lack of detail information
in the graphs such as modified date, size, and impacted code
hunks. For example, Fix(Jack, foo1.java) which means that
Jack fixed the foo1.java file, does not tell such specific in-
formation. In brief, a graph can only show the relations be-
tween entities and further information should be managed
somewhere else. That is, it is possible to store additional
information like relating table with foreign key in RDBMS.
Of course, nodes and edges can apparently store these infor-
mation with their attributes.

Table 5 Examples of 3-tuple for graphs.

Entity 1 relations entity 2
examples

developer communicate developer
Email(Dave, Jack), Message(Jack, Bob)

developer use ‘software artifact’
Fix(Jack, MyClass.java), Remove(Dave, Yours.xml)

‘software artifact’ include ‘code element’
Include(Spec.doc, requirement1)

‘code element’ dependency ‘code element’
Call(foo1, foo2), Include(MyClass, foo3), Assign(var1, var2)

1392
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

Those data for graphs can be generalized to “Rela-
tion(Entity1,Entity2)” which means that “Entity1” and “En-
tity2” have an order. Relational databases can easily imple-
ment this kind of fundamental types. However, sometimes
further processing is required for reasons related to perfor-
mance by transforming a sub-graph into a text string or
defining new complex types that are optimized for specific
domains. For example, you can create class, method, field
or parameter tables for easier source code analysis. Separate
tables of statistics also could be defined for special purposes
such as visualization.

4.4 Vectors

Specific data such as source code, natural language, and
graph, usually have attributes, which could be one of nu-
meric, nominal or text data types. They are often calculated
from metrics or values among the predefined categories.
The patterns of attributes are important for prediction, clus-
tering or association analysis. The number of attribute is
also critical because too large size of attributes could reduce
precision. Thus, selecting key attributes is necessary not
only for achieving better analysis results but also for simpler
models. In addition, some attributes that depend on other at-
tributes should be eliminated for better analysis. When there
are dependencies between the attributes, it is not needed to
use both of it; by enduring the high computational cost due
to large vector size. In addition to cost problem, co-related
attributes which has not been reduced may be the cause of
biased results. For better processing, it is enough to use one
representative of co-related attributes.

Some specific machine learning algorithms are not ap-
plicable for numeric type attributes. Therefore, those at-
tributes should be transformed into nominal types by defin-
ing some limited ranges and grouping similar numeric val-
ues into one category. Normalizations of attribute values are
also required to compare data which have different ranges
of values. For example, (v-min)/(max-min) can be used for
linear normalization where v is the attribute value before
normalization, min and max is the minimum value and max-
imum of the attribute, respectively. The changes of software
can be represented with vector [142], entropy can be used as
a key attribute to characterize the author contributions per
file [55] or to calculate the complexity of changes for pre-
dicting error-prone codes [56].

4.5 Discussion

“Garbage in, garbage out” is a phrase emphasizing the im-
portance of input data in order to get high-quality output.
Actually, data extraction and processing are very important
steps for making analysis easier and improving the quality
of the result. Most MSR time is spent for data extraction
and processing.

Sometimes, further processing may be required in or-
der to be adapted for tools or environments. For example,
the final data should be table styles for Excel or DBMS, and

arff format is required for WEKA. Thus, proper data types
such as nominal, ordinal or numeric should be defined based
on the metrics or probabilities calculated from the software
engineering domain knowledge.

While processing fundamental data, outliers could be
detected in the data. However, they are not always removed
because they could give more interesting results for anomaly
analysis. Most of data mining algorithms are robust to noise,
but some of them are not. Recently, there has been a re-
search to reduce noise from raw analysis data [57].

5. Analysis

5.1 Data Mining Algorithms

Data mining algorithms are often used in the MSR analysis
for source codes, bug reports or software artifacts. For ex-
ample, classifications or regressions in MSR can be consid-
ered as supervised learning problems. Classifying priority,
severity, security bug reports or good reports, and predict-
ing defects based on the bug/fix memories belong to these
problems.

Bayesian network, rule-based ZeroR, tree-based Id3 or
J48 are mainly used for the classification problems. How-
ever, in order to use Id3 algorithm with numeric data, proper
transformation should be conducted for the numeric at-
tributes because only nominal values can be applied for
it. Support Vector Machine (SVM) is also known to be
more general and achieves high performance of classifica-
tion. Neural networks are mainly used for regression prob-
lems. Regression is very similar to classification but the only
difference is that the output has quantitative values, not nom-
inal values. Association is finding related attributes such as
the change coupling issue in MSR. Actually, using histori-
cal data is a very effective way for this issue because it could
find co-change relations even if there are no traditional de-
pendencies such as data or control flows. Apriori is a major
association algorithm, which is also only applicable for the
attributes of nominal data types. Clustering is a typical un-
supervised learning problem, and the major methods are hi-
erarchical clustering, K-means, SOM (self organizing map)
and EM (expectation maximization). In the case of using
K-means or SOM, the number of clusters should be known
and the cost is higher than hierarchical approach. However,
they are known to have better quality of results than EM. As
clustering is an unsupervised problem, historical data is not
always necessary. Examples of related problems are clone
detection and grouping components.

Table 6 shows major data mining algorithms for MSR
and their related issues. It has been referred from Halkidi
et al.’s work [146]. These algorithms are effectively applied
to vectors that include numeric or nominal types such as sta-
tistical data or metrics. For example, the nearest neighbor
algorithm has been used to predict the effort of issue reports
in [163]. Decision tree has been used to predict develop-
ers’ contribution in [145]. In [65], SVM has been applied
for the bug triage and in [147], association rule mining has

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1393

Table 6 Major data mining algorithms and MSR issues.

Category Classification Regression Association Clustering
Supervised Yes Yes Yes No
Input don’t care quantitative don’t care don’t care
Output discrete quantitative associated

attributes
homogeneous clus-
ters

MSR
Issues

priority,
severity,
SBRs/NSBRs
for bug re-
ports, etc.

change rate,
of bug,
quality,
complexity
cost, etc.

change cou-
pling,
impact anal-
ysis, etc.

clone, code pat-
tern, etc.

Algorithms SVM, Near-
est Neighbor,
Decision trees

Neural net-
work

Apriori K-means,
hierarchical clus-
tering,
SOM, EM

Table 7 Detailed category of purposes.

keyword existing approaches
bug bug fix [58]–[61], [155]

duplicate bug detection [28]–[30]
prediction [15], [18], [31]–[33], [62]–[64]
bug resolvers [65], [66]
using information retrieval [68]

change prediction [69]–[71]
refactoring [72], [73]
API-change [74], [75], [77], [80], [81]
change patterns [83]–[88], [90], [160]

team-activity developer’s contribution [55], [91], [93], [94], [154]
experties of developers [96], [97], [149]
tool support [98], [99], [128], [151]
helpful information [100]

comprehension visualization [101], [102], [156]
identifiers [104], [105], [153]
recording operations [106]

validation metrics [45], [107], [157]
tool [108]
clones [109]–[112], [150], [159]
bug [113], [114]

development&
evolution

development [118]–[120]
evolution [115]–[117], [152], [158]

been applied for the defect data analysis. Hierarchical clus-
tering algorithm has been used to understand the developer’s
role in [148], and defect priority has been determined based
on neural networks [32]. However, other specific algorithms
should be implemented when directly applied to the domain
oriented types such as source code.

There are more issues such as sequential pattern or out-
lier discovery. Sequential pattern analysis focuses on find-
ing relations in ordinal data and it is related to automated
code completion or change prediction. Outlier discovery is
related to detecting anomalies in the source code or devel-
opment process.

5.2 Purpose of MSR Analysis

Table 7 presents the detailed category of MSR purposes,
their detailed task types, and existing approaches. Table 8–
13 for each purpose summarize the existing approaches in
view of task, data sources, output, and target systems. Due
to space restriction, only a part of it is presented. For entire
tables, please refer [161].

Table 8 Existing approaches to support bug-related activities (part).

task [ref] data source output target system
bug-fix anal-
ysis

[155] Git, CVS development charac-
teristics

Linux Kernel,
PostgresSQL

detecting du-
plicated bugs

[30] CVS, bug
repository

duplicated defect re-
ports

Eclipse, Fire-
fox

revealing use-
less phase in
defect predic-
tion

[63] CVS,
Bugzilla

empirical observations:
the influence of con-
cept drift

Eclipse,
OpenOffice,
Netbeans,
Mozilla

predicting the
severity of bugs

[31] BugZilla severe bugs and non-
severe bugs

Mozilla,
Eclipse,
GNOME

identifying se-
curity bug re-
ports

[129] Cisco’s bug
tracking
system

security bug reports four Cisco soft-
ware systems

bug triage [65] CVS,
BugZilla

expertise to fix the re-
ported bugs

Eclipse, Fire-
fox

To support Bug-related activity
There have been several studies on bug-fix: empirical
study on the patterns for bug-fix [58], [155], automatic bug-
fix [59], [60], understanding the bug-fix patterns of hard-
ware project [61]. Sliwerski et al. conducted the empiri-
cal analysis about fix-inducing change based on CVS log
and BugZilla [58]. For example, they investigated whether
or not some change properties such as specific day or spe-
cific working group are actually correlated with problems.
The experimental results showed that fix-inducing changes
mostly happened on Friday and Saturday in case of Mozilla
and Eclipse, respectively. The number of fix-inducing trans-
actions is about three times that of non-fix inducing trans-
actions. Eyolfson et al. studied the co-relationship between
the patterns of commits and the bugginess for those com-
mits [155]. They explored the Linux Kernel and Postgres-
SQL and found several observations: The commits from
midnight to 4 A.M were highly possible to be buggy and
the commits of everyday committers were less buggy. They
also argued that the influence of day-of-week on commits
was variable for each project. Williams and Hollingworth
suggested a technique to automatically find and fix bugs by
mining bug-fix information in source code repository, espe-
cially on the bugs of function-return-value check [59], [60].
Sudhakrishnan et al. studied the bug-fix patterns of hard-
ware projects [61]. As most of hardware projects utilize CM
(Configuration Management) repositories, they mined bug-
fix history on four Verilog projects and manually defined 25
bug-fix patterns.

There was a text-based analysis approach for detecting
duplicate bugs [28], [29]. However, Wang et al. increased
the recall of duplicate bug detection by combining the meth-
ods from natural language and execution information [30].
Their approach showed 67%–93% recall in Firefox reposi-
tory, which had been 43%–72% for natural language only.

Prediction is the main subject of mining software
repository and predicting bugs has been also widely studied.
By extracting bug/fix code patterns from the history, simi-
lar code patterns in the future are considered to have high
chances of introducing similar bugs. Based on the bug/fix

1394
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

patterns that had been learned from the change history of
source codes, BugMem [15] tried to predict the project-
specific bugs. The approach is different from others such
as JLint [16], FindBugs [17] which use the static analysis of
a snapshot of source codes. BugMem is more effective for
detecting project-specific bugs, but it has limits in finding
some trivial bugs such as missing null checks. It also re-
quires enough change history to use the approach. There
was a similar research using change couplings. Four kinds
of bug localities such as change entity, new entity, temporal,
and spatial localities had been checked whenever the source
codes were modified. Further, the locations which are only
related to bugs and fixes were stored into a cache [18]. If
a similar code in the cache is detected, the developers are
alerted for possible bugs. The accuracy was 73–95% in the
file, 46–72% in the method level. Nagappan et al. suggested
an approach to combine complexity metrics and post-release
defect history as to construct the prediction model of post-
release failures [62]. They also validated four hypotheses
that present the correlation between complexity and post-
release defects, by five MS products. The hypotheses and
the validation results are as follows:

- H1: The complexity metrics correlate with post-release
defects (Supported).

- H2: There exist a single set of metrics which predict
defects in all projects (Rejected).

- H3: There exist combined metrics to predict the post-
release defects within a project (Supported).

- H4: The combined metrics in H3 can predict defects in
other projects (Partially confirmed).

In case of H4, they asserted that the predictors from a project
are only useful to similar projects, and not every project.

Lamkanfi proposed a technique to predict the severity
of bugs via text mining algorithms, which had been manu-
ally predicted [31]. The technique has been applied to three
open sources, Mozilla, Eclipse, and GNOME. The results
showed that a sufficient size training set makes it possible to
predict with reasonable accuracy. There have been studies
of predicting the priority of bug reports based on neural net-
works [32]. Similarly, classifying security bug reports from
non-security related reports was conducted based on the text
mining approach [33]. Ekanayake et. al revealed that useless
phase exists in defect prediction using the notion of concept
drift, which invalidates a learned prediction model [63]. As
history data is a good predictor of future bugs in the sta-
ble phase, however, in unstable phase, it is not the case, re-
sulting in reducing the effectiveness of future effort and re-
source allocation. They built the defect prediction model for
Eclipse, OpenOffice, Netbeans, and Mozilla, and they then
visualized the prediction quality. The results represent that
software systems usually have significant concept drifts in
history, and particularly the number of authors editing files
and the number of defects fixed by the authors contribute the
concept drift and degenerate the quality of prediction. Giger
et al. showed that fine-grained source code changes (SCC)
is better than the existing line modified (LM) for bug pre-

diction [64]. SCC incorporates semantic of changes, which
are not provided by LM. They established three hypothe-
ses: First, SCC is strongly correlated with the number of
bugs. Second, SCC is more effective than LM to classify
the source files into bug-prone and none bug-prone. Third,
SCC outperforms to predict the number of bugs compared to
LM. These hypotheses are validated through an experiment
on the Eclipse system.

There are researches on recommending bug re-
solvers [65], [66]. Anvik et al. recommended the list of po-
tential developers who can resolve BRs by supervised learn-
ing [65]. The past reports of BugZilla are applied as classi-
fiers, and they are then trained with project-specific heuris-
tics, not with the direct usage of ‘assigned-to’ fields in BR.
Matter et al. suggested an approach to automatically assign
BRs to relevant developers using vocabulary [66]. The ex-
pertise of each developer has been modeled by comparing
the vocabulary of source codes contributed by the devel-
oper and the vocabulary of BRs. The evaluation has been
conducted based on a comparison between recommended
developers and actual developers. The empirical results in-
corporate 33.6% top-1 precision and 71.0% of top-10 recall
based on investigating the Eclipse for 8 years.

Information retrieval is applied to bug localization.
Rao and Kak compared five text models, VSM (Vector
Space Model), LSA (Latent Semantic Analysis Model),
UM (Unigram Model), LDA (Latent Dirichlet Allocation
Model), and CBDM (Cluster-Based Document Model), to
retrieve relevant files from libraries using benchmarked
dataset iBugs [67], [68]. MAP (Mean Average Precision)
and ‘Rank of Retrieved Files’ are used as evaluation mea-
sures. In conclusion, a simple model, such as VSM or Un-
igram shows better performance than complex models like
LDA, LSA, and CBDM.

Table 9 Existing approaches to support change-related activities (part).

task [ref] data source output target system
change predic-
tion

[69]
[70]

CVS,
BugZilla

the set of changeable
files

Kcalc, Kpdf,
Kspread, Fire-
fox ([69])
Gedit, Argo-
UML, Fire-
fox ([70])

relating API
changes to
refactoring

[74] version con-
trol system

empirical observations:
the influence of API
changes

Eclipse, Struts,
JHotDraw,
Log4j, Mort-
gage

detecting API
evolution

[77] version con-
trol system

API changes by Diff-
Catchup
Diff-Catchup: a tool
to recognize API
changes

HTMLUnit,
JFreeChart

providing API
usage adapta-
tion patterns

[80] version con-
trol system

suitable patterns by
LibSync
LibSync: API us-
age code adaptation
framework

JHotDraw,
JFreeChart

identifying
FAC

[88] CVS FAC (frequently
applied changes)

Tomcat

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1395

To support Change-related activity
Many studies have been conducted on change prediction
area [69]–[71]. Canfora and Cerulo defined impact anal-
ysis techniques based on information retrieval, which no-
tify the set of changeable files using the textual descriptions
about newly introduced bugs in the bug repository [69]. In
that approach, a BR is linked to a commit message, that is,
specific bug id is connected to a set of files. The list of
changeable relevant files can be created by querying in the
textual description in BR. After that, in [70], precision has
been enhanced by 10%, due to the granularity has been de-
tailed from file-level to line-level. However, execution time
changed from second level to hour level. Robbes et al. pre-
sented a benchmark that is able to evaluate the change pro-
duction technique with fine-grained change data recorded in
IDE, and showed the procedure to estimate existing predic-
tion techniques [71].

Refactoring is a typical cause of change. Weiβgerber
and Diehl defined a method to identify refactoring
in changes [72]. In [72], line-based differences are
mapped onto the difference between syntactic entities like
class. Several refactorings such as move/rename class
and move field/method, are identified from changes like
add/delete/modify. And then, they indirectly correlated the
number of bugs per refactoring with the number of change
entities, the number of bugs per changed entities, and the
frequency of refactorings per changed entities, as to ascer-
tain that refactorings induce less bugs than other changes.
They concluded that refactorings are less bug-prone in most
cases. Ratzinger et al. investigated the relationship between
refactoring and defects [73]. They extracted 110 data mining
features from versioning and issue tracking system. The ex-
tracted features have been classified into refactoring feature
and non-refactoring features, which were utilized as input
data for the classification algorithm of the defect prediction
model. They showed that the features improve the quality of
the defect prediction model. They also presented that refac-
toring and defects are inversely correlated. Finally, they ar-
gued that refactorings play an important part in evolutionary
changes to decrease the number of bug-fix and defects.

API changes are deeply associated with refactor-
ings. Dig and Johnson studied the API changes be-
tween two versions of framework/library (component) and
classified changes into breaking change and non-breaking
change [74]. Various data are used such as “change logs, re-
lease notes, help documentation, developer interviews, and
manual examination of source code differences”. Their
approach has been applied to three open source frame-
works, ECLIPSE framework, Struts, and JHotDraw, one
open source library, log4j, and one proprietary framework
Mortgate. Two versions were analyzed for each framework.
The results showed that about 89% of the total breaking
changes were the effect of refactorings. In other works, the
principle of “behavior preserving” was kept in frameworks
or library. However, it was broken in client applications.
Henkel and Diwan developed CatchUp, which captures and
replays refactoring to support API evolution [81]. This is a

lightweight approach, not using version control or configu-
ration management system. After capturing the API change,
CatchUp replays the refactoring when it is applied to client
components. Taneja et al. found that 80% of API changes
were caused by refactorings, and they proposed an approach
to automatically detect the refactorings to automatically up-
grade the applications [75]. In the first step, refactoring can-
didates for two versions are extracted using Refactoring-
Crawler [76] by syntactic analysis. And then, RefactLib re-
fines the results using various heuristics and classified them
onto seven predefined refactoring types. Xing and Strou-
lia studied the API evolution problems in reuse-based soft-
ware development and suggested “API-evolution catch-up
methodology” [77]. In the approach [77], API changes are
automatically detected in the reused framework and a rel-
evant substitute for “obsolete” API is recommended based
on working examples of the framework code base. The
methodology consists of three phases: First, UMLDiff [78]
automatically detects the change facts of the old and new
versions in reusable component framework. Second, the
heuristic process is executed in API migration problems to
answer the questions with which the client application de-
velopers are confronted. Third phase, the client application
developers obtain a set of replacement and usage example
proposals that are formulated and presented. Those results
are visualized with JDEvAn Viewer [79], which enables in-
teractively exploring them. Nguyen et al. showed “API us-
age code adaptation framework” to guide API usage adap-
tation by learning the API usage adaptation patterns which
appeared in other clients who had already migrated to the
new library [80]. They argued that the proposed framework
compensates for the drawbacks that the existing studies have
shown include; In CatchUp [81], the library maintainer and
application developers should be in the same development
environment. In [60], [82], the used modeling technique is
too simple. The input of framework incorporates the cur-
rent version of client application, old and new versions of
library, and a set of programs that already migrated to the
new library version. This framework is composed of four
constituents: OAT (origin analysis tool), CUE (client API
usage extractor), SAM (API usage adaptation miner), and
LIBSYNC. LIBSYNC has a knowledge base of API usage
adaptation patterns for each library version, and it detects
the locations of client’s API usage, which are related to the
changed APIs, for the given client system and library ver-
sion to migrate. And then, it relates each usage with the
best suitable API usage pattern in its knowledge base and
suggests the edit operations for adaptation.

Some studies have focused on classifying changes
and detecting change patterns. Purushothaman and Perry
analyzed the impact of small changes, especially one-
line changes, about faults, relations between changes
(add, delete, and modify), reasons of changes (correc-
tive, adaptive, and perfective), and dependencies between
changes [83], [84]. They derived some empirical results as
follows: About 10% changes were one-line changes; 50%
changes were at most about 10 loc (line of codes) changes;

1396
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

95% of changes were 50 loc changes; Most changes were
‘adaptive’ and related to ‘code addition’.; Only 4% of one-
line changes lead to defects. Zimmermann et al. identified
the co-occurring changes in SW systems using changes of
entities and association rule mining technique [85]. One ex-
ample of co-occurring changes is that the modification of
function A results in the modification of B and C. They
extended their approach to include addition and deletion in
[86]. Ying et al. suggested a technique to get change pat-
terns based on data mining and evaluated their approach
with Eclipse and Mozilla using predictability and interest-
ingness of the developers [160]. Change patterns in [160] in-
dicate that the set of related files are possible to be changed
together from the change history of codes. They insisted that
the change patterns help developers notice to the change-
related files when they change a file. After preprocessing he
extracted the data from SCM system, the association rule
mining algorithm was applied, and then, the change pat-
terns were generated and shown via query. However, it is
hard to apply Ying et al’s approach when the number of
transactions is small, and it is also difficult to measure in-
terestingness. Kim et al. conducted fine-grained analysis
on function-signature change [87]. The frequency and com-
mon patterns of function-signature changes, the frequency
distribution of the patterns are uncovered through the anal-
ysis. Rysselberghe and Demeyer studied FAC (frequently
occurring changes) [88]. Every CVS delta is examined via
the CVS log command, and the corresponding source code
changes are recorded in a text file. FAC is the CVS deltas,
the clones detected by a CCFinder [89]. FAC is regarded
as an indicator of the reasons for code redundancy, possi-
ble design enhancement, etc., and it helps to identify re-
curring change patterns and refactoring. Kim et al. stud-
ied the change of micro patterns, programming idioms, in
JAVA [90]. They focused on the change analysis of class
micro pattern types and tried to correlate reported bugs and
the change of micro patterns. Three open source projects,
JEdit, ArgoUML, and Columbia were selected for the exper-
iment, and Kim et al. concluded that the correlation between
changes and bugs remains inconclusive.

To support development and management
Information like individual developer’s contribution and ex-
pertise of developers is helpful to managers or develop-
ers. Huang and Liu grouped developers using logs (deltas)
stored in CVS repository, and determined the contribution
of each developer on the module-level [91]. In the ap-
proach, a graph is created, which is composed of nodes
and edges indicating developers and ‘common contribution
relationship’, respectively. That is, an edge among devel-
opers means they contributed the same directory (module).
Casebolt et al. characterized each author’s contribution per
file using author entropy [55]. Author entropy is based on
the entropy theory indicating disorder, and it can estimate
the distribution of each author contribution in a file. Their
methodology has been applied to GNOME project and sev-
eral observations were presented: When two authors con-

Table 10 Existing approaches to support development and management
(part).

task [ref] data source output target system
characterizing
each author’s
contribution

[55] SVN inverse relationship be-
tween author entropy
and file size

multiple
GNOME
projects

studying cred-
ability of de-
velopers

[154] CVS, SVN,
BugZilla

empirical results: co-
relations between cred-
ability and three fac-
tors (bug/experience/
organization)

multiple
Eclipse
projects

identifying ex-
pertise based
on usage ex-
pertise

[97] CVS measure for expertise Eclipse

recommending
appropriate ar-
tifacts

[98]
[99]

CVS,
BugZilla,
emails

Hipikat: a tool to rec-
ommend suitable ar-
tifacts in the group
memory

Eclipse

supporting soft-
ware history ex-
ploration

[128] CVS,
BugZilla

Rationalizer: a tool
to integrate historical
information and show
the data in view of
‘when/who/why’

Eclipse Graph-
ical Editing
Framework

tributed to a file, it is highly possible for large files to have
dominant author. Small authors mainly contribute to white
space formatting changes, output message changes, inter-
face modifications, and possible bug fixes. Robles et al.
proposed a quantitative methodology to study the evolu-
tion of core team [93]. In each period, the most active
developers are notified and their activities are calculated.
Gousious et al. suggested a precise developer contribution
measurement by combining traditional contribution metrics
and mined data in repositories [94]. The proposed metric
is defined with loc of each developer and CF (contribu-
tion factor) function per developer. CF is the core in the
study, which analyzes the developers’ actions into positive
and negative, and it sets weights to each action. This met-
ric is theoretically validated in Kaner and Bond metric eval-
uation framework [95]; however, it is not empirically vali-
dated. The credibility of a developer is important in OSS
(open source software), as the development team is open
to the external developers in many OSS community and the
core team in the project wants to involve credible developers
to the project. Sinha et al. empirically constructed three hy-
potheses for increasing the developer’s credibility and val-
idated them with Eclipse system [154]. They hypothesized
that a developer’s credibility is deeply related to his (her)
contribution of bugs (H1), his (her) project experience (H2),
and the organization which a developer belongs to (H3).
In [154], H1 is the most applicable (51%), H3 is the next
(38%). They expect that the results are applied to recruit
new developers.

Alonso et al. showed a technique to identify and visual-
ize the expertise of a committer with CVS data for large open
source projects [96]. To do this, the directories of source
codes are used as a classification scheme, and transactions
are classified according to categories. The size of name
is proportional to the number of each committer’s transac-

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1397

tions in the visualization, and the expertise of the commit-
ter is also shown. Schuler and Zimmermann recommended
developer’s expertise based on usage expertise [97]. Agile
environment requires dynamic team composition. Existing
techniques are mostly based on line 10 rules, that is, the
developer who changed the source code most frequently is
considered to have expertise. However, they adopted usage
expertise, where the developer using functionality via API
call is focused. By applying the approach to Eclipse, it is
shown that experts of a file can be recommended without the
help of history data, developers who have similar expertise
are the identifier, and API usage can be measured. Minto
and Murphy suggested EEL (Emergent Expertise Locator)
approach and the tool which presented a ranked list of the
emergent team members for a specific task [149]. When a
user selects a file in EEL, list of developers who communi-
cate for the file are displayed. To do this, file dependency
matrix and expertise matrix based on file authorship matrix
are used. File dependency matrix denotes co-modification
between two files, and file authorship matrix shows the fre-
quencies of modifications per file for each developer.

Cubranic et al. developed a tool, Hipikat to help new
developers [98], [99]. Some artifacts like source codes,
email, BRs (bug reports), are stored in project memory, and
similarity between artifacts are measured via the vector-
based IR method. The relationships between artifacts are
also derived by heuristics. The appropriate artifacts in
project memory are recommended to developers by query-
ing explicitly or by Hipikat automatically. Developers
try to co-relate various data such as bug reports, check-
ing message, email archives, etc., in order to understand
the characteristics of the target codes [151]. To automate
this, Holmes and Begel developed a tool, Deep Intellisense,
which presents various historical information for a single
code element by providing current item view, people view,
and event history view [151]. Bradley and Murphy also de-
veloped Rationalier, a tool to show the history of the source
code in an integrated form [128]. They compared their re-
sults with Deep Intellisense [151] via a comparison model
that they had constructed. Rationalize show historical data
in view of ‘when/who/why’ for particular code line. They
suggested developing more improved tool which incorpo-
rates the advantages of the two tools in future work.

Hindle et al. proposed a technique to automatically
extract labeled topic to help software maintenance activ-
ity in the form of supervised and semi-unsupervised ap-
proach [100]. They used only commit comments and not
functional requirements but NFR (nonfunctional require-
ments) are targeted. Thus, the technique is not project-
specific and it has cross-project characteristics. Experiments
have been conducted on MySQL and MaxDB. The experi-
mental results show that projects have different relative in-
terests in NFRs and the maintenance activities are affected
by external stimuli, not by time.

To enhance Comprehension
There have been several approaches to enhance the soft-

Table 11 Existing approaches to enhance comprehension (part).

task [ref] data source output target system
recovery of the
origin of enti-
ties

[156] Maven2
central
repository

a metric to measure
the similarity of two
entities

an e-commerce
application

splitting iden-
tifiers

[105] SourceForge Samurai approach: to
automatically split
identifiers using a scor-
ing technique based
on word frequencies

open source
Java programs

investigating
identifier
renamings and
their effects

[153] CVS, SVN empirical results: sev-
eral characteristics
about identifier re-
naming

Eclipse-JDT,
Tomcat

a change aware
environment

[106] n/a OperationRecorder: a
tool to record editing
operations

a reversi game
as a Java ap-
plet

ware evolution or understandability of the software. Tu and
Godfrey developed Beagle, which has an analysis compo-
nent that performs origin analysis and determining change
types such as addition or deletion of entities between ver-
sions. [101]. The origin analysis consists of Bertillonage
analysis and dependency analysis. For each release, loc,
CC (cyclomatic complexity), and number of parameters are
measured and stored as evolution metric vector, and ver-
sion similarity is defined based on Euclidian distance be-
tween each vector. That is, high similarity indicates that
post-release is likely to originate from the preceding release.
Bertillonage analysis is based on similarity and entity-name
matching, which is aimed to determine the type of changes
like the addition or deletion of entities. Dependency analy-
sis assumes that the clones caused by move or rename tend
to follow the original relationships such as call, called-by,
etc. in the previous version. Beagle provided two simul-
taneous views for structural and architectural changes via
structural diagram and dependency diagram, individually.
Structural diagram shows hierarchical view of software en-
tities like subsystems, modules, and functions. Davies et al.
proposed a technique to find the origin of software entity
using anchored signature matching based on Bertillonage
analysis [156]. In this technique, Bertillonage metric for
JAVA archive has been defined to match binary class file
to source file. The experimental results present that the
metric effectively reduces a search space of the candidate
source. The dependency diagram presents architectural dif-
ferences between two releases. Görg and Weiβgerber pre-
sented the structural refactoring and local refactoring [102]
based on the technique in [103]. Structural refactorings
include “move class, move method, pull up method, push
down method, and so on”. Several refactorings like “hide
method, rename method, add/remove parameter” are local
refactorings. In [102], class-hierarchy view and package-
layout views are given. The various refactorings are distinct
with different colors.

Word frequency is used to improve component under-
standing [104] and to split the identifier for analysis [105].
Kuhn suggested the lexical approach to automatically label
the SW component by using log-likelihood ration of word

1398
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

frequencies and applied it to detect the evolution trends of
SW system [104]. Identifiers play an important role to un-
derstand programs, because they contain meaningful infor-
mation such as the intension of the developers [153]. Identi-
fier splitting is required for the analysis of identifiers; how-
ever, it is not sufficient to depend only on naming conven-
tions to properly split the identifiers in the source codes.
Enslen et al. proposed the Samurai approach to automati-
cally split an identifier into words using a scoring technique
based on the word frequencies of the source codes [105].
This approach has been applied to nearly 8000 identifiers
in the open source JAVA programs. The results show that
the proposed approach performs more efficiently than the
existing state-of-the-art approaches. Eshkevari et al. inves-
tigated identifier renaming (synonym, hypernym, hyponym,
and antonym) and studied their effect on the program un-
derstanding [153]. They applied their approach to Tomcat
and Eclipse-JDT and they found several observations: Re-
naming occurred frequently during a specific time frame by
a part of the developers at class interfaces. The types of
renaming include not only the synonym, but also antonym
or meronym, which is possible to be error modifications.
Many error modifications were conducted on short strings,
for example, prefix/suffix change or typo modification. In
conclusion, they argued that renaming reflects the changes
of the domain model by the developers.

Omori and Maruyama presented a mechanism to
record all edit operations conducted on source codes in
IDE by a developer, as to enhance the comprehension of
the program [106]. It is not sufficient to present individual
changes using only current snapshots or the difference be-
tween subsequent snapshots, which were used in the exist-
ing approaches.

To empirically validate novel ideas and techniques
Several studies have been conducted to empirically validate
existing observations or techniques about software evolu-
tion. Capiluppi et al. studied the complexity of software
systems [107], as to test several hypotheses on the evolution-
ary characteristics of open sources. Examples of the char-
acteristics are as follows: “As release grows, the functional
size becomes larger.”, “the potential co-relationship between
new developer arrival rate and code growth.” The case study
on ARLA system shows that the number of files and fold-
ers grows linearly, and the size is stabilized over release.

Table 12 Existing approaches to empirically validate novel ideas and
techniques (part).

task [ref] data source output target system
evaluating an
efficiency met-
ric

[157] database of
customer
problem re-
ports

empirical results: char-
acteristic of “mean time
to close problem re-
ports”

defect reports
(one of IBM’s
software di-
visions)

understanding
code clones

[110] CVS empirical results: char-
acteristics of clones

ArgoUML,
DNSJava

validating neg-
ativeness of
clones

[112] Git empirical results: char-
acteristics of clones

Apache, Gimp

The results also indicate that the structure depth becomes
nearly constant; however, the width tends to be similar to
the number of folders. Those indicate that ARLA is a well-
structured system. Nugroho et al. evaluated the applicabil-
ity of UML design metrics as to predict the fault-proneness
of JAVA classes [45]. They constructed prediction models
based on UML using the historical data of an industrial JAVA
system, and validated it. As a result, it was found that mes-
sages from sequence diagrams and the detail level of import
coupling can be applied as an important predictor of class
fault-proneness, and the precision of the model using UML
design metrics is higher than the model using code metrics.
Zeltyn et al. evaluated “mean time to close problem” which
is widely used to measure the efficiency of software mainte-
nance through the accumulated customers’ problem reports
in IBM [157]. They insisted that ‘percentile’ is more suit-
able to measure efficiency than ‘mean’ for handling time.

Vetro et al. studied the capability of FindBug, which
is a popular bug finding tool [108]. They applied it to their
university java projects, and only two issues out of fifteen
issues had high precision. They argued that the technique
they used in [108] helps to reduce the information overload
of developers.

The characteristics of clones have been empirically in-
vestigated. Kim and Notkin suggested an approach based
on clone’s history to support maintenance [109]. In their ap-
proach, a directed graph is generated that consists of nodes
indicating clone groups per versions and edges indicating
the relations between the groups. A set of clone lineage
which originated from the same clone group becomes clone
genealogy. Based on the clone genealogy, some research
questions are investigated: “how many do source clones
require significant maintenance challenge?”, “Is aggressive
refactoring is the best solution for clone maintenance?.”
They concluded that clones should be maintained, not re-
moved during evolution. There is no consensus on the con-
sistency of clones. To the contrary, Aversano et al. insisted
that the clone groups change consistently [110]. Krinke
showed that about 50% of clones change consistently and
the rate of consistent change does not increase as version
grows [111]. Lozano et al. developed CloneTracker, a tool
which detects the rate of change of applications contain-
ing clones, and they applied it to DnsJAVA [150]. They
found out that the cloned codes were more changeable; how-
ever, they concluded that their foundation cannot be gener-
alized, because DnsJAVA had been developed by only two
developers. After that, they observed that clones influenced
the maintenance effort by analyzing the effect of clones to
changeability. However, they could not find systematic re-
lation between them [159]. Rahman et al. empirically val-
idated the general negative characteristics of clones [112].
The relations between clones and defect-proneness have
been analyzed, and they concluded that most of bugs are
not seriously related to clones, clones are less defect-prone
than non-cloned codes. They also presented that there is
little evidence that frequently copied clones are more error-
prone. In other words, they asserted that clones are not “bed

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1399

smell”.
Bachmann and Bernstein explored the extent the bug

fixing process is affected by the process data quality and
characteristics, and what influence does the process quality
measured with process data have on product quality [113].
Six open sources and two closed sources have been selected
for an empirical study, and the results showed that the qual-
ity and characteristics of process data have an effect on the
bug-fixing process. For example, the ratio of empty com-
mit has been related with the bug report quality, in Eclipse.
They also presented that the product quality that has been
measured with the number of bug reports was affected by
the quality of process data. They noted that those results
are applicable to enhance the process quality and product
quality. Boogerd and Moonen tried to clarify the corre-
lations between observing coding standard and fault intro-
duction [114]. Several aspects for violation and faults have
been investigated: “Is release/file/modules with higher vi-
olation density more fault-prone?” and “Is violated lines
more faulty?”. Cross-release, in-release and line-based anal-
yses were conducted to reveal the aspects. In the cross-
release analysis, violations and faults are not related. How-
ever, they showed that the ten rules of coding standard can
be significant predictors in the in-release analysis and line-
based analysis.

To understand software development and software evo-
lution
This category introduces existing works trying to understand
the derived characteristics or trends of software develop-
ment and evolution through empirical study.

Maalej and Happel explored the way software develop-
ers describe their jobs [118]. For eight years, they analyzed
75,000 work descriptions of 2,000 professionals and found
that there are similarities between metadata of contents and
time in the description; the typical pattern is “ACTION con-
cerning ARTIFACT because of CAUSE” [118]. Developers
did not describe their job in detail. They argued that the re-
sult is applicable to automatically generate the work diaries
of developers. Hindle et al. tried to understand large com-
mits which include a large number of files [119]. The large
commits had been not usually considered in MSR [119].

Table 13 Existing approaches to understand software development and
software evolution (part).

task [ref] data source output target system
exploring the
ways of de-
scrbing
projects

[118] SVN, source
control sys-
tem

describing pattern MyComp,
Apache,
Eureka

understanding
software evo-
lution

[115] CVS, email
archives,
BugZilla

empirical observations:
characteristics of soft-
ware evolution

Evolution

understanding
evolution of
software prod-
uct line

[158] CVS empirical observations:
failure trend and change
trend of commom/
variable component in
software product line

Eclipse

They manually classified large commits in 9 open sources
and compared them with small commits. From their ob-
servations, large commits tend to be ‘perfective’ and small
commits tend to more ‘corrective’ which is about failure
handling. ‘Perfective’ is related to improve efficiency, per-
formance and maintainability. They insisted that large com-
mits provide insight into the method of project development
and reflect the development practices of authors. Layman
et al. mined software effort data via VSTS (Visual Studio
Team System) [120]. In statistically analyzing 55 features
effort estimation data of VSTS 2008 release, they discovered
that actual estimation errors were positively correlated with
feature size. In addition to it, they found that the in-process
metrics of estimation error were related to the final estima-
tion error and the team conversation was helpful in uncov-
ering the cause of effort estimation inaccuracy. In [120],
visualization supported to identify the estimation errors.

German presented a methodology to recover project
evolution using software trails [115]. Trails include version
releases, version control logs, and mailing lists. Based on
the trails using SoftChange [92], he studied the evolution
of Evolution, which is the email client, between 1998 and
2003. Here are some of the results: The distribution size
grows faster than source code size; a developer tends to con-
centrate on one module; MR (modification request) includes
a small number of files, etc. In other research by German,
subsequent changes have been grouped as MR using CVS
annotations [116]. In the maintenance period mainly exe-
cuted bug-fix, the number of MRs is smaller than the im-
provement period when new functionalities are added. Most
of files have been modified many times by same develop-
ers. Though there are some cases which different devel-
opers modify a set of common files, the files usually be-
long to the same module. Nikora and Munson examined
the source of variations in the set of metrics composed of
twelve size metrics and CC under evolution [117]. The as-
sumption is that all kinds of changes do not uniformly af-
fect the whole complexity of a system. For example, the
change, adding comments, has less impact on module struc-
ture than other changes. They verified the assumption and
investigated the suitableness of structural metrics to predict
faults and the kinds of changes that contribute to insert faults
in the system. They concluded that the control structure
is changed more rapidly than others and many changes are
caused by the control structure change. The change activ-
ities had been fluctuated in all domains of few beginning
builds; however, after a specific build when control struc-
ture domain becomes a dominant factor, they are stabilized.
Herraiz et al. empirically described the SOC (self organized
criticality) dynamics of libre software [152]. In the previ-
ous study [162], Wu insisted that libre software is SOC, that
is, current state of project has been already determined be-
fore. Extensive experiments have been conducted in [152]
and the results present that evolution of libre software is not
SOC. Krishnan et al. analyzed the failure trend and the
change trend of common/variable components in software
product line, and investigated the relationship between fail-

1400
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

ure and change [158]. Eclipse system, regarded as the evolv-
ing product line, was selected for experiment. They revealed
that the number of serious failures and changes decreased in
the common component. However, in the case of variable
components, which were used by five or more products, did
not show uniformly decreasing patterns. This indicates that
more detailed study is needed in the product line area.

6. Evaluation

Most of MSR studies use open source projects, such as
KDE, GCC, Apache, Eclipse, JEdit, or ArgoUML, as their
experimental repositories [121]. They are often used for
evaluating the results or proposed approaches in MSR.

One of the most commonly used metrics for the evalu-
ations are recall and precision. They were used in various
MSR projects [65], [69], [75], [86], [99], [108], [122], [123].
For example, the precision of FindBugs was calculated
based on NI and NA where NI is the number of predicted
issues given by FindBugs and NA is the number of actual
defects. Recall was not defined in their research because
they did not get the complete set of actual defects. However,
manual checks have been conducted in order to get the num-
ber of actual modifications in UMLDiff [122]. Precision and
recall were also used for detecting API refactoring [75] and
sometimes F-measure that is equal to their harmonic aver-
age are applied in order to consider the recall and precision
at the same time [127]. The accuracy, precision and recall
for evaluation of classification or detection problem are usu-
ally defined as (TP+TN)/(TP+TN+FP+FN), TP/(TP+FP)
and (TP/TP+FN) where TP, TN, FP and FN is true posi-
tive, true negative, false positive and false negative, respec-
tively [26], [31], [124].

There are many models for defect prediction; how-
ever, evaluation of them is still an ‘open question’ [165].
D’Ambros et al. classified the types of prediction into clas-
sification, ranking, and effort-aware ranking and describes
suitable evaluation metrics for each type [167]. Classifica-
tion presents the results of the prediction into several types,
for example, ‘defective/non-defective’ are derived from bi-
nary classification. To evaluate the classification technique,
AUC (the area under the ROC curve) is recommended be-
cause precession and recall are sensitive to threshold [167].
AUC is scalar performance measure from ROC (the receiver
operating characteristics). X-axis of ROC curve is the prob-
ability of false alarm, and y-axis is the detection probabil-
ity. AUC is measured as the area between the curve and
x-axis in ROC. Lessmann et al. experimented 10 data sets
of NASA MDP (metrics data program) with AUC apply-
ing 22 classifier models [164]. They found out that the per-
formance of the classification models was not significantly
different and their roles had been overestimated in previous
studies [164]. In ranking, the list of ranked modules as re-
sults is known as MOM (module-order model) [166]. MOM
is a software quality model which is to be used for predict-
ing the rank-order of each module according to the quality
factor such as the number of faults [166]. To evaluate MOM,

Popt is used based on cumulative lift charts, where x-axis is
the ordered modules according to a prediction model and
y-axis is a cumulative ratio of the identified defects. Popt

suggested by Mende and Koschke [165] is defined as ‘1-
delta(opt)’, where delta(opt) is the difference between the
prediction model and the optimal model. Effort-aware rank-
ing incorporates ranking and efforts to review. Existing eval-
uation techniques assume that additional QA (quality assur-
ance) cost is equal for each module, however, the cost to
review or test is highly related to size. Popt is also used in
evaluating effort-aware ranking, but Peff is used in [167] to
avoid confusion. X-axis of the cumulative lift chart is the
ordered classes according to defect density. That is, the cri-
teria is simple defect count in ranking, however, in effort-
aware ranking, the criteria of X-axis is a value derived by
dividing the number of defects with loc of each module.
In addition, CE (cost effectiveness) has been defined [165],
which is the difference between the random model and pre-
diction model. CE and Popt is similar, but their usage is
different; CE provides insight of cost effectiveness for pre-
diction model and Popt is used to fairly evaluate the predic-
tor performance [165]. An information-theoretic approach
could be used in order to evaluate the probabilistic models
to predict bugs or changes [125]. The effectiveness of the
approach could be e valuated by comparing the distribution
of the predicted values and actual values. The entropy mea-
surements are typically used for the distribution metrics.

Statistical methods such as correlation or t-test are
also important evaluation techniques [113]. Bachmann and
Bernstein used tau (τ) rank correlation coefficient in order
to evaluate the correlation between process data and prod-
uct quality [126]. It is considered to be more effective in
the case of having outliers, compared to other coefficient
metrics such as Spearman or Pearson correlation coefficient.
And then, a t-test can be conducted for the significance of
the tau correlation value. For machine learning, 10-fold
cross-validation is usually used for determining the train-
ing set and test set. For performance comparisons among
available learning algorithms, the t-test is applied. The size
of the training set should not be too small. However, overfit-
ting also should be avoided because it shows low precision
for the unknown or test data even if they have high precision
for the training data. When analyzing the data, this kind of
bias should be eliminated in order to escape from making a
wrong decision.

7. Opportunities and Challenges

The rush for software repositories started less than 10 years
ago and there are still a lot of gold mines that could provide
new insights into the MSR area. As the data of the software
projects become larger and more various, new effective ap-
proaches for data extraction, process and analysis will be
raised as challenging issues. Some MSR open issues are as
follows.

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1401

Generalization of mining software repositories
Many MSR studies have been individually conducted ac-
cording to specific repositories or domains and there is a
lack of a standardized model of MSR. The common re-
quirements in the MSR process have not been systemat-
ically reflected. The MSR approaches are dependent on
the types of data sources. Especially, the data schema for
each repository is different and it should be designed for
each case. It is a time-consuming, repeated and error-prone
work. However, the approaches to processing or analyzing
data can have common parts and can be identified to be de-
fined as general approaches. Thus, this kind of work can
guide the MSR researchers and provide them more system-
atic approaches for handling the data and artifacts. Com-
mon models could be used for analysis steps and they can
be obtained from each of the repository specific models.
Meta-repository approach like FLOSSMole [180], [182] and
FLOSSMetrics [179], [181] are representative cases for the
effort. They are similar in that they provide the FLOSS
data in an applicable form by extracting and processing,
which results in the reduction of burden in collecting data
for MSR researchers [183]. FLOSSMetrics focuses on the
developer’s activity and it mainly utilizes source control
system, mailing lists, and bug tracking system, however,
FLOSSMole does not focus on obtaining whole data of a
given project. It collects various data such as community
and team size, from several different repositories and pro-
vides them with various formats [183]. We expect those to
become the motive power of future MSR research. The tar-
get of generalization includes not only the repository, but
also models or methodologies recurring in the overall MSR
process. The generalization or standardization of the models
or methodologies makes it possible to help MSR researcher
with the various aspects.

Supporting mining software repository researchers
This issue is related to the first one because most of the
practical supports such as integrated research environments
or tools could be implemented after the definition of MSR
models. As the MSR process requires time and resource,
the optimization of the process is needed [169]. Shang
et al. showed a framework to support MSR research using
MapReduce [170] which is a framework to handle large vol-
ume of data [169]. Mockus constructed universal reposi-
tory by extracting a quantity of data from the public and
corporate VCS [168]. Based on the formalized models or
methodologies from various MSR experiences, the MSR
approaches could be optimized. Their theoretical mod-
els or operations can be used for organizing the MSR re-
search concepts. Existing version control systems such as
CVS and SVN store only snapshop, and in [171], [172],
tool to store not only the simple log but changes have also
been proposed. For example, Syde in [172] records ev-
ery change. These attempts to extend the functionality of
the VCS enables MSR researchers to utilize change in in-
formation without encountering much burden in process-
ing change data. As MSR process essentially utilize vari-

ous project data accumulated during project time, scale and
complexity of data grows and the kinds of data source be-
come varied. Thus, tools or environments to manage the
complexity are required more and more.

New development domains or data sources
As shown in tables in [161], MSR researchers have been
mostly focused on C/C++, Java applications. There have
not been many studies related to the web applications. Thus,
these new domains can provide other results from previous
domains such as Object-oriented environment. Most of the
data sources in [161] were CVS or SVN, however, another
version control system like Git, new development contexts
or tools such as Mylyn or IBM Jazz can provide new data
sources. The newly adopted data elements from these data
sources can provide new features and enhance the MSR re-
sults. Also, [161] shows that many existing MSR researches
have been conducted on the open source software, which in-
dicates that more commercial software should be considered
in the MSR research for balanced results.

Applications of other domain approaches
Recently, human aspect in empirical software engineering is
on the increase [173], and SNA (social network analysis) in
MSR is the main case of it [175]. SNA is diversely adopted;
Applying SNA to CVS [174], mining mailing list [177],
graph visualization of developers’ network [176], analyzing
developer’s blog [178], validation of SNA metrics [173]. As
social networks are being actively constructed and a variety
of media to communicate appear, social network analysis in
MSR is challengeable in the future. Various graph-based ap-
proaches to other network domains could be applied to the
MSR issues [146]. For example, developers who have high
impact on the overall development process or other devel-
opers could be retrieved by using the concept of prestige,
which is used by PageRank.

Quality enhancement of results
Repositories become more complex and provide more de-
tailed data. For example, Mylyn can provide fine-grained
data entities such as programmers’ editing files or selecting
menus with time stamps. IBM Jazz can also provide full
traceability among all software artifacts, which could en-
hance the quality of the relational data between the source
codes and the bug reports. Actually, connecting the various
repositories becomes a challenging issue [8]. Reduced noise
of the extracted data can also improve the analysis results.
Finally, the increased quality of the data and the enhanced
algorithms for the MSR could provide better precision and
recall.

8. Conclusion

MSR is a young multidisciplinary research area which in-
cludes data mining, artificial intelligence and software en-
gineering. The general process of MSR is composed of ex-
tracting, processing and analyzing data sources. The funda-

1402
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

mental techniques, theories and knowledge for accomplish-
ing the phases mainly come from these heterogeneous stud-
ies. Thus, MSR is full of new challenges for combining and
adapting new approaches to solve interesting issues such as
defect or change prediction, bug report classification, devel-
oper guidance and so on.

Knowledge and information that can be obtained by
mining historical software repositories can improve devel-
opers’ decision-making processes in the future. That will
enable them to do their job more efficiently with the ac-
quired knowledge base, by supplementing their intuition
and/or experience.

Acknowledgments

This research was supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2011-0005632).

References

[1] Zimmer, http://thomas-zimmermann.com/research accessed Nov.
10, 2011.

[2] G. Cobena, S. Abiteboul, and A. Marian, “Detecting changes in
XML documents,” Proc. Int’l Conf. on Data Eng., San Jose, CA,
USA, pp.41–52, Feb.-March 2002.

[3] Jazz, http://jazz.net accessed June 10, 2011.
[4] Mylyn, http://www.eclipse.org/mylyn accessed June 10, 2011.
[5] MSR, http://www.msrconf.org accessed June 10, 2011.
[6] P. Tan, M. Steinbach, and V. Kumar, Introduction to data mining,

Addison Wesley, USA, 2005.
[7] ISO/IEC, http://pascal.computer.org/sev display accessed June 10,

2011.
[8] A.E. Hassan, “The road ahead for mining software reposito-

ries,” Proc. Frontiers of Software Maintenance, pp.48–57, Beijing,
China, Sept. 2008.

[9] CVS, http://www.nongnu.org/cvs accessed June 10, 2011.
[10] SVN, http://subversion.tigris.org accessed June 10, 2011.
[11] Git, http://git-scm.com accessed June 10, 2011.
[12] Mercurial, http://mercurial.selenic.com accessed June 10, 2011.
[13] Bazzar, http://bazaar.canonical.com accessed June 10, 2011.
[14] Darcs, http://darcs.net/ accessed June 10, 2011.
[15] S. Kim, K. Pan, and E. James Whitehead Jr., “Memories of bug

fixes,” Proc. Int’l Symposium on Foundations of Software Engi-
neering, pp.35–45, Graz, Austria, March 2006.

[16] JLint, http://artho.com/jlint accessed June 10, 2011.
[17] FindBugs, http://findbugs.sourceforge.net accessed June 10, 2011.
[18] S. Kim, T. Zimmermann, E.J. Whitehead, Jr., and A. Zeller, “Pre-

dicting faults from cached history,” Proc. Int’l Conf. on Software
Engineering, pp.489–498, Minneapolis, MN, USA, May 2007.

[19] BugZilla, http://www.bugzilla.org accessed June 10, 2011.
[20] Trac, http://trac.edgewall.org accessed June 10, 2011.
[21] JIRA, http://www.atlassian.com/software/jira accessed June 10,

2011.
[22] MySQL, http://www.mysql.com accessed June 10, 2011.
[23] Postgre, http://www.postgresql.org accessed June 10, 2011.
[24] Oracle, http://www.oracle.com accessed June 10, 2011.
[25] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?,” Proc. Int’l Sym-
posium on Foundations of Software Eng., pp.308–318, Atlanta,
GA, USA, Nov. 2008.

[26] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Ex-

tracting structural information from bug reports,” Proc. Int’l Work-
ing Conf. on Mining Software Repositories, pp.27–30, Leipzig,
Germany, May 2008.

[27] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Dupli-
cate bug reports considered harmful... Really?,” Proc. Int’l Conf.
on Software Maintenance, pp.337–345, Beijing, China, Sept.
2008.

[28] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” Proc. Conf. on Dependable Systems and Net-
works, pp.52–61, Anchorage, Alaska, USA, June 2008.

[29] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of du-
plicate defect reports using natural language Processing,” Proc.
Int’l Conf. on Software Eng., pp.499–510, Minneapolis, MN,
USA, May 2007.

[30] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execu-
tion information,” Proc. Int’l Conf. on Software Eng., pp.461–470,
Leipzig, Germany, May 2008.

[31] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting
the severity of a reported bug,” Proc. Working Conf. Mining Soft-
ware Repositories, pp.1–10, Cape Town, South Africa, May 2010.

[32] L. Yu, W.T. Tsai, W. Zhao, and F. Wu, “Predicting defect priority
based on neural networks,” Proc. Int’l Conf. on Advanced Data
Mining and Applications, pp.356–367, Chongqing, China, Nov.
2010.

[33] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” Proc. Working Conf.
on Mining Software Repositories, pp.11–20, Cape Town, South
Africa, May 2010.

[34] N. Nagappan, B. Murphy, and V. Basili, “The influence of or-
ganizational structure on software quality: An empirical case
study,” Proc. Int’l Conf. on Software Eng., pp.521–530, Leipzig,
Germany, May 2008.

[35] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?,” Proc. Int’l Symposium on Foundations
of Software Eng., pp.2–12, Atlanta, Georgia, USA, Nov. 2008.

[36] M.E. Conway, “How do committees invent?,” Datamation, vol.14,
no.5, pp.28–31, 1968.

[37] K.A. Schneider, C. Gutwin, R. Penner, and D. Paquette, “Mining
a software developer’s local interaction history,” Proc. Int’l Work-
shop on Mining Software Repositories, pp.106–110, Edinburgh,
Scotland, UK, May 2004.

[38] L. Yu, S. Ramaswamy, and C. Zhang, “Mining email archives
and simulating the dynamics of open-source project developer
networks,” Proc. Int’l Workshop on Enterprise & Organizational
Modeling and Simulation, pp.17–31, Montpellier, France, June
2008.

[39] E. Shihab, Z.M. Jiang, and A.E. Hassan, “On the use of Internet
Relay Chat (IRC) meetings by developers of the GNOME GTK+
project,” Proc. Int’l Working Conf. on Mining Software Reposito-
ries, pp.107–110, Vancouver, Canada, May 2009.

[40] E. Shihab, Z.M. Jiang, and A.E. Hassan, “Studying the use of de-
veloper IRC meetings in open source projects,” Proc. Int’l Conf. on
Software Maintenance, pp.147–156, Edmonton, Alberta, Canada,
Sept. 2009.

[41] XMI, http://www.omg.org/spec/XMI accessed June 10, 2011.
[42] Visual-paradigm, http://www.visual-paradigm.com accessed June

10, 2011.
[43] Enterprise Architect, http://www.sparxsystems.com accessed June

10, 2011.
[44] IBM-tau, www.ibm.com/software/awdtools/tau accessed June 10,

2011.
[45] A. Nugroho, M.R.V. Chaudron, and E. Arisholm, “Assessing UML

design metrics for predicting fault-prone classes in a Java sys-
tem,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.21–30, Cape Town, South Africa, May 2010.

[46] T.H.D. Nguyen, A. Schröter, and D. Damia, “Mining jazz: An ex-

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1403

perience report,” Proc. Int’l Workshop on Infrastructure for Re-
search in Collaborative Software Eng., Atlanta, GA, USA, Nov.
2008.

[47] K. Herzig and A. Zeller, “Mining the Jazz repository: Challenges
and opportunities,” Proc. Int’l Working Conf. on Mining Software
Repositories, pp.159–162, Vancouver, Canada, May 2009.

[48] S. Rastkar and G.C. Murphy, “On what basis to recommend:
Changesets or interactions?,” Proc. Int’l Working Conf. on Min-
ing Software Repositories, pp.155–158, Vancouver, Canada, May
2009.

[49] M. Kersten and G.C. Murphy, “Using task context to improve pro-
grammer productivity,” Proc. Int’l Symposium on Foundations of
Software Engineering, pp.1–11, Portland, OR, USA, Nov. 2006.

[50] ANTLR, http://www.antlr.org accessed June 10, 2011.
[51] JDT, http://www.eclipse.org/jdt accessed June 10, 2011.
[52] Java2XML, http://sourceforge.net/projects/java2xml accessed June

10, 2011.
[53] xmlDiff, http://diffxml.sourceforge.net/ accessed June 10, 2011.
[54] Y. Wang, D.J. Dewitt, and J.Y. Cai, “X-Diff: An effective change

detection algorithm for XML documents,” Proc. Int’l Conf. on
Data Eng., pp.519–530, Bangalore, India, March 2003.

[55] J.R. Casebolt, J.L. Krein, A.C. MacLean, C.D. Knutson, and D.P.
Delorey, “Author entropy vs. file size in the gnome suite of applica-
tions,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.91–94, Vancouver, Canada, May 2009.

[56] A.E. Hassan, “Predicting faults using the complexity of code
changes,” Proc. Int’l Conf. on Software Eng., pp.78–88,
Vancouver, Canada, May 2009.

[57] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” Proc. Int’l Conf. on Software Eng., Waikiki,
Honolulu, Hawaii, May 2011.

[58] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?,” Proc. Int’l Workshop on Mining Software Reposi-
tories, pp.24–28, St. Louis, MO, USA, May 2005.

[59] C.C. Williams and J.K. Hollingsworth, “Bug driven bug finders,”
Proc. Int’l Workshop on Mining Software Repositories, pp.70–74,
Edinburgh, Scotland, UK, May 2004.

[60] C.C. Williams and J.K. Hollingsworth, “Automatic mining of
source code repositories to improve bug finding techniques,” IEEE
Trans. Softw. Eng., vol.31, no.6, pp.466–480, June 2005.

[61] S. Sudhakrishnan, J.T. Madhavan, E.J. Whitehead Jr., and J. Renau,
“Understanding bug fix patterns in Verilog,” Proc. Int’l Work-
ing Conf. on Mining Software Repositories, pp.39–42, Leipzig,
Germany, May 2008.

[62] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” Proc. Int’l Conf. on Software Eng., pp.452–
461, Shanghai, China, May 2006.

[63] J. Ekanayake, J. Tappolet, H.C. Gall, and A. Bernstein, “Track-
ing concept drift of software projects using defect prediction qual-
ity,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.51–60, Vancouver, Canada, May 2009.

[64] E. Giger, M. Pinzger, and H.C. Gall, “Comparing fine-grained
source code changes and code churn for bug prediction,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.83–92,
Honolulu, HI, May 2011.

[65] J. Anvik, L. Hiew, and G.C. Murphy, “Who should fix this bug?,”
Proc. Int’l Conf. on Software Eng., pp.361–370, Shanghai, China,
May 2006.

[66] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports
using a vocabulary-based experties model of developers,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.131–
140, Vancouver, Canada, May 2009.

[67] V. Dallmeier and T. Zimmermann, “Automatic extraction of bug
localization benchmarks from history,” Proc. Int’l Conf. on Auto-
mated Software Eng., pp.433–436, Atlanta, GA, USA, Nov. 2007.

[68] S. Rao and A. Kak, “Retrieval from software libraries for bug local-
ization: A comparative study of generic and composite text mod-

els,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.43–52, Honolulu, HI, May 2011.

[69] G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” Proc. Int’l Symposium on Soft-
ware Metrics, pp.29–37, Como, Italy, Sept. 2005.

[70] G. Canfora and L. Cerulo, “Fine grained indexing of software
repositories to support impact analysis,” Proc. Int’l Workshop on
Mining Software Repositories, pp.105–111, Shanghai, China, May
2006.

[71] R. Robbes, D. Pollet, and M. Lanza, “Replaying IDE interac-
tions to evaluate and improve change prediction approaches,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.161–
170, Cape Town, South Africa, May 2010.

[72] P. Weiβgerber and S. Diehl, “Are refactorings less error-prone than
other changes?,” Proc. Int’l Workshop on Mining Software Repos-
itories, pp.112–118, Shanghai, China, May 2006.

[73] J. Ratzinger, T. Sigmund, and H.C. Gall, “On the relation of refac-
toring and software defects,” Proc. Int’l Working Conf. on Mining
Software Repositories, pp.35–38, Leipzig, Germany, May 2008.

[74] D. Dig, and R. Johnson, “How do APIs evolve? A story of refac-
toring,” Journal of Software Maintenance and Evolution: Research
and Practice, vol.18, no.2, pp.83–107, 2006.

[75] K. Taneja, D. Dig, and T. Xie, “Automated detection of api refac-
torings in libraries,” Proc. Int’l Conf. on Automated Software Eng.,
pp.377–380, Atlanta, GA, USA, Nov. 2007.

[76] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Auto-
mated detection of refactorings in evolving components,” Proc.
European Conf. on Object-Oriented Programming, pp.404–428,
Nantes, France, July 2006.

[77] Z. Xing and E. Stroulia, “API-Evolution support with diff-
catchup,” IEEE Trans. Softw. Eng., vol.33, no.12, pp.818–836,
Dec. 2007.

[78] Z. Xing and E. Stroulia, “Differencing logical UML models,” J.
Automated Software Eng., vol.14, no.2, pp.215–259, June 2007.

[79] Z. Xing and E. Stroulia, “Bottom-up design evolution concern dis-
covery and analysis,” Technical Report, TR07-13, Univ. of Alberta,
July 2007.

[80] H.A. Nguyen, T.T. Nguyen, G. Wilson Jr., A.T. Nguyen, M. Kim,
and T.N. Ngyuen, “A Graph-based approach to API usage adapta-
tion,” Proc. Int’l Conf. on Object-oriented programming systems
languages and applications, pp.302–321, Reno/Tahoe, NV, USA,
Oct. 2010.

[81] J. Henkel and A. Diwan, “CatchUp!: Capturing and replaying
refactorings to support API evolution,” Proc. Int’l Conf. on Soft-
ware Eng., pp.274–283, St. Louis, MO, USA, May 2005.

[82] B. Dagenais and M.P. Robillard, “SemDiff: Analysis and recom-
mendation support for API evolution,” Proc. Int’l Conf. on Soft-
ware Eng., pp.599–602, Vancouver, Canada, May 2009.

[83] R. Purushothaman and D.E. Perry, “Towards understanding the
rhetoric of small changes,” Proc. Int’l Workshop on Mining Soft-
ware Repositories, pp.90–94, Edinburgh, Scotland, UK, May
2004.

[84] R. Purushothaman and D.E. Perry, “Toward understanding the
rhetoric of small source code changes,” IEEE Trans. Softw. Eng.,
vol.31, no.6, pp.511–526, 2005.

[85] T. Zimmermann, P. Weiβgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” Proc. Int’l Conf. on
Software Eng., pp.563–572, Edinburgh, Scotland, UK, May 2004.

[86] T. Zimmermann, A. Zeller, P. Weiβgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Trans. Softw.
Eng., vol.31, no.6, pp.429–445, 2005.

[87] S. Kim, E.J. Whitehead, and J. Bevan, “Analysis of signature
change patterns,” Proc. Int’l Workshop on Mining Software Repos-
itories, pp.64–68, St. Louis, MO, USA, May 2005.

[88] F. Van Rysselberghe and S. Demeyer, “Mining version control sys-
tems for FACs (frequently applied changes),” Proc. Int’l Workshop
on Mining Software Repositories, pp.48–52, Edinburgh, Scotland,

1404
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

UK, May 2004.
[89] CCFinder, http://www.ccfinder.net accessed June 10, 2011.
[90] S. Kim, K. Pan K, and E.J. Whitehead Jr., “Micro pattern evo-

lution,” Proc. Int’l Workshop on Mining Software Repositories,
pp.40–46, Shanghai, China, May 2006.

[91] S.K. Huang and K.M. Liu, “Mining version histories to verify the
learning process of legitimate peripheral participants,” Proc. Int’l
Workshop on Mining Software Repositories, pp.84–78, St. Louis,
MO, USA, May 2005.

[92] D.M. German, “Mining CVS repositories, the softChange expe-
rience,” Proc. Int’l Workshop on Mining Software Repositories,
pp.17–21, Edinburgh, Scotland, UK, May 2004.

[93] G. Robles, J.M. Conzalez-Barahona, and I. Herraiz, “Evolution
of the core team of developers in Libre software projects,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.167–
170, Vancouver, Canada, May 2009.

[94] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring devel-
oper contribution from source repository data,” Proc. Int’l Work-
ing Conf. on Mining Software Repositories, pp.129–132, Leipzig,
Germany, May 2008.

[95] C. Kaner and W. Bond, “Software engineering metrics: What do
they measure and how do we know?,” Proc. Int’l Software Metrics
Symposium, pp.1–12, Chicago, IL, USA, Sept. 2004.

[96] O. Alonso, P.T. Devanbu, and M. Gertz, “Expertise Identification
and Visualization from CVS,” Proc. Int’l Working Conf. on Mining
Software Repositories, pp.125–128, Leipzig, Germany, May 2008.

[97] D. Schuler and T. Zimmermann, “Mining Usage Expertise from
Version Archives,” Proc. Int’l Working Conf. on Mining Software
Repositories, pp.121–124, Leipzig, Germany, May 2008.

[98] D. Cubranic and G.C. Murphy, “Hipikat: Recommending perti-
nent software development artifacts,” Proc. Int’l Conf. on Software
Eng., pp.408–418, Portland, OR, USA, May 2003.

[99] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth, “Hipikat:
A project memory for software development,” IEEE Trans. Softw.
Eng., vol.31, no.6, pp.446–465, 2005.

[100] A. Hindle, N.A. Ernst, M.W. Godfrey, and J. Mylopoulos, “Auto-
mated Topic naming to support cross-project analysis of software
maintenance activities,” Proc. Int’l Working Conf. on Mining Soft-
ware Repositories, pp.163–172, Honolulu, HI, May 2011.

[101] Q. Tu and M.W. Godfrey, “An integrated approach for studying
architectural evolution,” Proc. Int’l Workshop on Program Com-
prehension, pp.127–136, Paris, France, June 2002.

[102] C. Görg and P. Weiβgerber, “Detecting and visualizing refactorings
from software archives,” Proc. Int’l Workshop on Program Com-
prehension, pp.205–214, St. Louis, MO, USA, May 2005.

[103] C. Görg and P. Weiβgerber, “Error detection by refactoring recon-
struction,” Proc. Int’l Workshop on Mining Software Repositories,
pp.29–33, St. Louis, MO, USA, May 2005.

[104] A. Kuhn, “Automatic labeling of software components and their
evolution using log-likelihood ratio of word frequencies in source
code,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.175–178, Vancouver, Canada, May 2009.

[105] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining
Source Code to Automatically Split Identifiers for Software Anal-
ysis,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.71–80, Vancouver, Canada, May 2009.

[106] T. Omori and K. Maruyama, “A change-aware development en-
vironment by recording editing operations of source code,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.31–34,
Leipzig, Germany, May 2008.

[107] A. Capluppi, M. Moriso, and J.F. Ramil, “Structural evolution of
an open source system: A case study,” Proc. Int’l Workshop on
Program Comprehension, pp.172–182, Bari, Italy, June 2004.

[108] A. Vetro, M. Torchiano, and M. Morisio, “Assessing the preci-
sion of FindBugs by mining Java projects developed at a univer-
sity,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.110–113, Cape Town, South Africa, May 2010.

[109] M. Kim and D. Notkin, “Using a clone genealogy extractor for
understanding and supporting evolution of code clones,” Proc. Int’l
Workshop on Mining Software Repositories, pp.17–21, St. Louis,
MO, USA, May 2005.

[110] L. Aversano, L. Cerulo, and M.D. Penta, “How clones are main-
tained: An empirical study,” Proc. European Conf. on Soft-
ware Maintenance and Reengineering, pp.81–90, Amsterdam,
Netherlands, March 2007.

[111] J. Krinke, “A study of consistent and inconsistent changes to
code clones,” Proc. Working Conf. on Reverse Eng., pp.170–178,
Vancouver, Canada, Oct. 2007.

[112] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that
smell?,” Proc. Int’l Working Conf. on Mining Software Reposi-
tories, pp.72–81, Cape Town, South Africa, May 2010.

[113] A. Bachmann and A. Bernstein, “When process data quality af-
fects the number of bugs: Correlations in software engineering
datasets,” Proc. Int’l Working Conf. on Mining Software Repos-
itories, pp.62–71, Cape Town, South Africa, May 2010.

[114] C. Boogerd and L. Moonen, “Evaluating the relation between cod-
ing standard violations and faults within and across software ver-
sions,” Proc. Int’l Working Conf. on Mining Software Reposito-
ries, pp.41–50, Vancouver, Canada, May 2009.

[115] D.M. German, “Using software trails to reconstruct the evolution
of software,” J. Software Maintenance and Evolution: Research
and Practice, vol.16, no.6, pp.367–384, 2004.

[116] D.M. German, “An empirical study of fine-grained software modi-
fications,” Proc. Int’l Conf. on Software Maintenance, pp.316–325,
Chicago, IL, USA, 2004.

[117] A.P. Nikora and J.C. Munson, “Understanding the nature of
software evolution,” Proc. Int’l Conf. on Software Maintenance,
pp.83–93, Amsterdam, Netherlands, Sept. 2003.

[118] W. Maalej and H. Happel, “From work to word: How do software
developers describe their work?,” Proc. Int’l Working Conf. on
Mining Software Repositories, pp.121–120, Vancouver, Canada,
May 2009.

[119] A. Hindle, D.M. German, and R. Holt, “What do large commits
tell us? A taxonomical study of large commits,” Proc. Int’l Work-
ing Conf. on Mining Software Repositories, pp.99–108, Leipzig,
Germany, May 2008.

[120] L. Layman, N. Nagappan, S. Guckenheimer, and J. Beehler, “Min-
ing software effort data: Preliminary analysis of visual studio
team system data,” Proc. Int’l Working Conf. on Mining Software
Repositories, pp.43–46, Leipzig, Germany, May 2008.

[121] H. Kagdi, M.L. Collard, and J.I. Maletic, “A survey and taxonomy
of approaches for mining software repositories in the context of
software evolution,” J. Software Maintenance and Evolution: Re-
search and Practice, vol.19, no.2, pp.77–131, March 2007.

[122] Z. Xing and E. Stroulia, “UMLDiff: An algorithm for object-
oriented design differencing,” Proc. Int’l Conf. on Automated Soft-
ware Eng., pp.54–65, Long Beach, CA, USA, Nov. 2005.

[123] A.E. Hassan and R.C. Holt, “Predicting change propagation in
software systems,” Proc. Int’l Conf. on Software Maintenance,
pp.284–293, Chicago, IL, USA, Sept. 2004.

[124] G. Canfora, C. Luigi, and D.P. Massimiliano, “Identifying changed
source code lines from version repositories,” Proc. Int’l Workshop
on Mining Software Repositories, p.14, Minneapolis, USA, May
2007.

[125] M. Askari and R. Holt, “Information theoretic evaluation of change
prediction models for large-scale software,” Proc. Int’l Workshop
on Mining Software Repositories, pp.126–132, Shanghai, China,
May 2006.

[126] M.G. Kendall, “A new measure of rank correlation,” Biometrika,
vol.30, no.1/2, pp.81–93, June 1938.

[127] C.J. van Rijsbergen, “Information Retrieval,” Butterworth, 1979.
[128] A.W.J. Bradley and G.C. Murphy, “Supporting software history ex-

ploration,” Proc. Int’l Working Conf. on Mining Software Reposi-
tories, pp.193–202, Honolulu, HI, May 2011.

JUNG et al.: A SURVEY ON MINING SOFTWARE REPOSITORIES
1405

[129] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” Proc. Working Conf.
on Mining Software Repositories, pp.11–20, Cape Town, South
Africa, May 2010.

[130] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of
object-oriented metrics on open source software for fault predic-
tion,” IEEE Trans. Softw. Eng., vol.31, no.10, pp.897–910, Oct.
2005.

[131] S. Kim, T. Zimmermann, K. Pan, and E.J. Jr. Whitehead, “Auto-
matic identification of bug-introducing changes,” Proc. Automated
Software Engineering, pp.81–90, Tokyo, Japan, Sept. 2006.

[132] J. Anvik and G.C. Murphy, “Determining implementation exper-
ties from bug reports,” Proc. Int’l Workshop on Mining Software
Repositories, Minneapolis, USA, May 2007.

[133] F. Khomh, B. Chan, Y. Zou, and A.E. Hassan, “An entropy evalu-
ation approach for triaging field crashes: A case study of Mozilla
Firefox,” Proc. Working Conf. on Reverse Eng., Lero, Ireland, Oct.
2011.

[134] A. Zaidman, B. van Rompaey, S. Demeyer, and A. van Deursen,
“Mining software reporitories to study co-evolution of production
& test code,” Proc. Int’l Conf. on Software Testing, Verification,
and Validation, pp.220–229, Lillehammer, Norway, April 2008.

[135] J. Long, “Understanding the role of core developers in open source
development,” J. Informationm, Information Technology, and Or-
ganizations, vol.1, pp.75–85, 2006.

[136] A.E. Hassan and T. Xie, “Software intelligence: The future of min-
ing software engineering data,” Proc. Working Conf. on Future of
Software Eng., pp.161–166, Santa Fe, NM, USA, Nov. 2010.

[137] G. Robles, “Empirical software engineering research on libre
software: Data sources, methodologies and results,” Doctorial
Thesis, Universidad Rey Juan Carlos, 2006. (http://libresoft.es/
publications/thesis-grex)

[138] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M. German,
and P.T. Devanbu, “The promise and perils of mining git,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.175–
178, Vancouver, Canada, May 2009.

[139] P.C. Rigby and A.E. Hassan, “What can OSS mailing lists tell us?
A preliminary psychometric text analysis of the Apache developer
mailing list,” Proc. Int’l Workshop on Mining Software Reposito-
ries, Minneapolis, USA, May 2007.

[140] S. Zaman, B. Adams, and A.E. Hassan, “Security versus perfor-
mance bugs: A case study on FireFox,” Proc. Int’l Working Conf.
on Mining Software Repositories, pp.93–102, Honolulu, HI, May
2011.

[141] D.M. German, “Using software distributions to understanding the
relationship among free and open source software projects,” Proc.
Int’l Workshop on Mining Software Repositories, Minneapolis,
USA, May 2007.

[142] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno, “FAVE:
Factor analysis based approach for detecting product line variabil-
ity from change history,” Proc. Int’l Working Conf. on Mining
Software Repositories, pp.11–18, Leipzig, Germany, May 2008.

[143] W. Maalej and H. Happel, “Can development work describe it-
self?,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.191–200, Cape Town, South Africa, May 2010.

[144] A. Mauczka, C. Schanes, F. Fankhauser, M. Bernhart, and T.
Grechenig, “Mining security changes in FreeBSD,” Proc. Int’l
Working Conf. on Mining Software Repositories, pp.90–93, Cape
Town, South Africa, May 2010.

[145] W.M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A.E.
Hassan, “Should I contribute to this discussion?,” Proc. Int’l Work-
ing Conf. on Mining Software Repositories, pp.181–190, Cape
Town, South Africa, May 2010.

[146] M. Halkidi, D. Spinellis, G. Tsatsaronis, and M. Vazirgiannis,
“Data mining in software engineering,” Intelligent Data Analysis,
vol.15, no.3, pp.413–441, May 2011.

[147] S. Morisaki, A. Monden, T. Matsumura, H. Tamada, and K.

Matsumoto, “Defect data analysis based on extended association
rule mining,” Proc. Int’l Workshop on Mining Software Reposito-
ries, Minneapolis, USA, May 2007.

[148] L. Yu and S. Ramaswamy, “Mining CVS repositories to under-
stand open-source project developer roles,” Proc. Int’l Workshop
on Mining Software Repositories, Minneapolis, USA, May 2007.

[149] S. Minto and G.C. Murphy, “Recommending emergent teams,”
Proc. Int’l Workshop on Mining Software Repositories,
Minneapolis, USA, May 2007.

[150] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the
harmfulness of cloning: A change based experiment,” Proc. Int’l
Workshop on Mining Software Repositories, Minneapolis, USA,
May 2007.

[151] R. Holmes and A. Begel, “Deep Intellisense: A tool for rehydrat-
ing evaporated information,” Proc. Int’l Working Conf. on Mining
Software Repositories, pp.23–26, Leipzig, Germany, May 2008.

[152] I. Herraiz, J.M. Gonzalez-Barahona, and G. Robles, “Determin-
ism and evolution,” Proc. Int’l Working Conf. on Mining Software
Repositories, pp.1–10, Leipzig, Germany, May 2008.

[153] L.M. Eshkevari, V. Arnaoudova, M. Di Penta, R. Oliveto, Y.
Guéhéneuc, and G. Antoniol, “An exploratory study of identifier
renamings,” Proc. Int’l Working Conf. on Mining Software Repos-
itories, pp.33–42, Honolulu, HI, May 2011.

[154] V.S. Sinha, S. Mani, and S. Sinha, “Entering the circle of trust:
Developer initiation as committers in open-source projects,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.133–
142, Honolulu, HI, May 2011.

[155] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess,” Proc. Int’l Working Conf.
on Mining Software Repositories, pp.143–152, Honolulu, HI, May
2011.

[156] J. Davies, D.M. German, M.W. Godfrey, and A. Hindle, “Soft-
ware bertillonage: Finding the provenance of an entity,” Proc.
Int’l Working Conf. on Mining Software Repositories, pp.183–
192, Honolulu, HI, May 2011.

[157] S. Zeltyn, P. Tarr, M. Cantor, R. Delmonico, S. Kannegala, M.
Keren, A.P. Kumar, and S. Wasserkrug, “Improving efficiency in
software maintenance,” Proc. Int’l Working Conf. on Mining Soft-
ware Repositories, pp.215–218, Honolulu, HI, May 2011.

[158] S. Krishnan, R.R. Lutz, and K. Goseva-Popstojanova, “Empir-
ical evaluation of reliability improvement in an evolving soft-
ware product-line,” Proc. Int’l Working Conf. on Mining Software
Repositories, pp.113–122, Honolulu, HI, May 2011.

[159] A. Lozano and M. Wermelinger, “Assessing the effect of clones
on changeability,” Proc. Int’l Conf. on Software Maintenance,
pp.227–236, Beijing, China, Sept.-Oct. 2008.

[160] T.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll, “Predict-
ing source code changes by mining change history,” IEEE Trans.
Softw. Eng., vol.30, no.9, pp.574–586, Sept. 2004.

[161] Summary of MSR purposes, http://zorba.knu.ac.kr/research/
MSR Survey/overall table.html accessed Dec. 6, 2011.

[162] J. Wu, Open source software evolution and its dynamics, PhD The-
sis, University Waterloo, 2006.

[163] C. Weiβ, R. Premraj, T. Zimmermann, and A. Zeller, “How long
will it take to fix this bug?,” Proc. Int’l Workshop on Mining Soft-
ware Repositories, Minneapolis, USA, May 2007.

[164] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed
framework and novel findings,” IEEE Trans. Softw. Eng., vol.34,
no.4, pp.485–496, July-Aug. 2008.

[165] T. Mende and R. Koschke, “Revisiting the evaluation of defect pre-
diction,” Proc. Int’l Conf. on Predictor Models in Software Eng.,
pp.1–10, Vancouver, Canada, May 2009.

[166] T.M. Khoshgoftaar and E.B. Allen, “Ordering fault-prone software
modules,” Software Quality J., vol.11, no.1, pp.29–37, May 2003.

[167] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect pre-
diction approaches: A benchmark and an extensive comparison,”

1406
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.5 MAY 2012

Empir Software Eng., pp.1–47, Aug. 2011.
[168] A. Mockus, “Amassing and indexing a large sample of version

control systems: Towards the census of public source code his-
tory,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.11–20, Vancouver, Canada, May 2009.

[169] W. Shang, Z.M. Jiang, B. Adams, and A.E. Hassan, “MapReduce
as a general framework to support research in Mining Soft-
ware,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.21–30, Vancouver, Canada, May 2009.

[170] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol.51, no.1, pp.1–13, Jan.
2008.

[171] R. Robbes, “Mining a change-based software repository,” Proc.
Int’l Workshop on Mining Software Repositories, Minneapolis,
USA, May 2007.

[172] L. Hattori and M. Lanza, “Mining the history of synchronous
changes to refine code ownership,” Proc. Int’l Working Conf. on
Mining Software Repositories, pp.175–178, Vancouver, Canada,
May 2009.

[173] R. Nia, C. Bird, P.T. Devanbu, and V. Filkov, “Validity of net-
work analyses in open source projects,” Proc. Int’l Working Conf.
on Mining Software Repositories, pp.201–209, Cape Town, South
Africa, May 2010.

[174] L. Lopez-Fernandez, G. Robles, and J.M. Gonzalez-Barahona,
“Applying social network analysis to the information in CVS
repositories,” Proc. Int’l Workshop on Mining Software Reposi-
tories, pp.101–105, Edinburgh, Scotland, UK, May 2004.

[175] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman,
and C. Williams, “Using software repositories to investigate socio-
technical congruence in development projects,” Proc. Int’l Work-
shop on Mining Software Repositories, Minneapolis, USA, May
2007.

[176] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer, “Visualiz-
ing collaboration and infuluence in open-source software commu-
nity,” Proc. Int’l Working Conf. on Mining Software Repositories,
pp.223–226, Honolulu, HI, May 2011.

[177] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” Proc. Int’l Workshop on Mining
Software Repositories, pp.137–143, Shanghai, China, May 2006.

[178] D. Pagano and W. Maalej, “How do developers blog?: An ex-
ploratory study,” Proc. Int’l Working Conf. on Mining Software
Repositories, pp.123–132, Honolulu, HI, May 2011.

[179] FLOSSMetrics Final Reports, http://flossmetrics.org/ accessed
Nov. 25, 2011.

[180] FLOSSmole, http://flossmole.org/ accessed Nov. 25, 2011.
[181] I. Herraiz, D. Izquierdo-Cortazar, F. Rivas-Hernandez, J.

Gonzalez-Barahonam, G. Robles, S. Duenas-Dominguez, C.
Garcia-Campos, J.F. Gato, and L. Tovar, “FLOSSMetrics:
Free/libre/open source software metrics,” Proc. European Conf.
on Software Maintenance and Reengineering, pp.281–284,
Kaiserslautern, Germany, March 2009.

[182] J. Howison, M. Conklin, and K. Crowston, “FLOSSmole: A col-
laborative repository for FLOSS reasarch and analyses,” Int’l Jour-
nal of Info. Technology and Web Eng., vol.1, no.3, pp.17–26, July
2006.

[183] J.M. Gonzalez-Barahona, “Repositories with public data about
software developmemt,” Int’l Journal of Open Source Software and
Processes, vol.2, no.2, pp.1–13, April 2010.

[184] percentage, http://zorba.knu.ac.kr/research/MSR Survey/
MSR09 11.html accessed Dec. 6, 2011.

[185] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?,” Proc. Int’l Working Conf. on Mining Soft-
ware Repositories, pp.118–121, Cape Town, South Africa, May
2010.

[186] SourceForge, http://www.sourceforge.net/ Nov. 25, 2011.
[187] GoogleCode, http://code.google.com/ Nov. 25, 2011.

Woosung Jung received his B.S. and Ph.D.
degree in Computer Science and Engineering
from Seoul National University, Korea, in 2003
and 2011, respectively. He was a researcher in
SK UBCare from 1998 to 2002. He was a senior
research engineer at Software Capability De-
velopment Center in LG Electronics from Aug.
2011 to Feb. 2012. He is currently a full time
lecturer at the Dept. of Computer Engineering,
Chungbuk National University. His research in-
terests include software evolution, software ar-

chitecture, adaptive software system and mining software repositories.

Eunjoo Lee received her B.S., M.S.,
and Ph.D. degrees in Computer Science from
Seoul National University, Korea in 1997, 1999,
and 2005, respectively. She was a research
staff member at Samsung Advanced Institute
of Technology from Nov. 2005 to Feb. 2006.
Currently, she is an assistant professor at the
School of Computer Science and Engineering at
Kyungpook National University. Her current in-
terests include software reengineering, software
metrics, web engineering, and mining software

repositories.

Chisu Wu received his B.E. degree in ap-
plied mathematics from Seoul National Univer-
sity, Korea in 1972 and his M.S. and Ph.D. de-
grees in Computer Science from Seoul National
University in 1977 and 1982, respectively. He
served as a researcher at the Loughborough Uni-
versity, UK in 1978. From 1975 to 1982, he
was an associate professor of Computer Science
at Ulsan University, Korea. Currently, he is a
professor of Computer Science and Engineering
at Seoul National University, Korea. His cur-

rent research interests include software engineering and programming lan-
guages.

