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A Survey on Statistical Modeling and Machine Learning
Approaches to Computer Assisted Medical Intervention:
Intraoperative Anatomy Modeling and Optimization of
Interventional Procedures

Ken’ichi MOROOKA†a), Member, Masahiko NAKAMOTO††b), Nonmember, and Yoshinobu SATO††c), Member

SUMMARY This paper reviews methods for computer assisted med-
ical intervention using statistical models and machine learning technolo-
gies, which would be particularly useful for representing prior information
of anatomical shape, motion, and deformation to extrapolate intraoperative
sparse data as well as surgeons’ expertise and pathology to optimize in-
terventions. Firstly, we present a review of methods for recovery of static
anatomical structures by only using intraoperative data without any preop-
erative patient-specific information. Then, methods for recovery of intra-
operative motion and deformation are reviewed by combining intraopera-
tive sparse data with preoperative patient-specific stationary data, which is
followed by a survey of articles which incorporated biomechanics. Fur-
thermore, the articles are reviewed which addressed the used of statistical
models for optimization of interventions. Finally, we conclude the survey
by describing the future perspective.
key words: statistical shape model, statistical deformation model, pre-
operating planning, surgical navigation, anatomical shape, organ motion,
tissue deformation

1. Introduction

For the last two decades, a variety of computer assisted
technologies for medical intervention have been developed.
Rapid progress of medical imaging and position sensing
technologies has accelerated the development. The early-
developed systems applied basic image processing and data
integration methods to image and sensor data obtained from
the patient who underwent an intervention. More recently,
a large amount of the past patient datasets on anatomy,
pathology, interventional planning, its execution, and out-
comes have been accumulated, which could provide effec-
tive feedback information for the systems. Closed loop in-
terventional medicine is a newly emerged paradigm which
includes this feedback process [1]. Figure 1 shows its
schematic diagram. In order to realize the paradigm, statis-
tical modeling and machine learning approaches play a key
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role in full utilization of these past patient datasets. Further-
more, sophisticated patient and interventional simulations
using a large amount of computational resources are becom-
ing possible [2], [3], which have been recently demonstrated
to be effectively incorporated into intra-procedural assis-
tance in a realtime manner by combining statistical mod-
eling and machine learning approaches.

In this paper, we provide a survey of computer as-
sisted medical intervention technologies using statistical
modeling and machine learning approaches, which have
also been shown to be useful for medical image segmen-
tation [4] and medical image retrieval [5]. These approaches
provide methods for modeling prior knowledge, such as sta-
tistical shape models [4], which can be utilized to realize
less-invasive, highly accurate, and optimized interventions.
That is, the prior knowledge is combined with sparse and in-
complete imaging and sensing information as obtained dur-
ing less-invasive procedures to estimate patient anatomy, or-
gan motion, and tissue deformation [6] in a highly accurate
manner. Furthermore, interventional procedures can be op-
timized by using the priors derived from a large amount of
the patient datasets where the past intervention planning, ex-
ecution, and its outcomes as well as patient anatomy are
digitally recorded. This survey describes recent progress on
these efforts.

In this paper, we do not deal with statistical mod-
els of surgical manipulation skill [7], [8] and surgical work-
flow [9]. Although these topics are important, the reason
of their omission is due to the limitations of the authors’
knowledge and specialty. In this survey, we focus on the
narrower sense of computer assisted intervention, which is
related to image and sensory information processing but not
to medical robotics and surgical informatics.

The structures of the paper are as follows. In Sect. 2,
intra-procedural anatomy modeling on shape and structures
is described. In Sect. 3, modeling of organ motion and tissue
deformation during interventions is described. In Sect. 4,
incorporation of biomechanical simulations via statistical
modeling and machine learning is described. In Sect. 5, sta-
tistical optimization of intervention procedures is described,
and we summarize the paper in Sect. 6.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers
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(a) Conventional computer assisted intervention (b) Closed loop interventional medicine

Fig. 1 Schematic diagram of computer assisted intervention.

2. Structure and Shape

Statistical modeling and machine learning have been shown
to be useful for predicting 3D anatomical shape and struc-
tures from sparse and incomplete image data as obtained
during the intervention, especially in minimally-invasive
procedures, even when any preoperative patient-specific 3D
information is not available. In this section, we focus on
modeling anatomical structures from datasets acquired us-
ing typical intraoperative modalities such as 3D digitizers,
ultrasound (US) imaging, 2D X-ray fluoroscopy, and en-
doscopes without preoperative 3D datasets as acquired by
CT and MR scanners. Although intraoperative CT and MR
scans are becoming common, we did not include the meth-
ods using the intraoperative CT and MR data in this section
because the methods for anatomical structure modeling us-
ing these datasets closely related to those using diagnostic
CT and MR data, and thus the survey may not become well-
focused. Therefore, we only deal with the methods using
typical intraoperative portable modalities.

So far, bones and urological organs are mainly targeted
to estimate their anatomical coordinate systems, shapes, and
density distributions. In clinical routine, 2D X-ray imaging
is still a primary modality in orthopaedics for not only intra-
operative but also preoperative imaging. US imaging plays
a similar role in urology. In addition, these structures are
typically assumed to be rigid or involve not large deforma-
tion. Therefore, intra-subject variability is not large in their
shapes. Therefore, clinically sufficient accuracy is expected
by combining statistical modeling and machine learning
with intraoperative data without patient-specific preopera-
tive data. Regarding urology applications, US imaging is
mainly used and a comprehensive survey paper has already
covered its intraoperative use [10]. Therefore, we focus on
orthopedics in this paper. In the followings the details are
described.

Orthopedic surgical navigation systems began to be
clinically tested in mid-1990. These systems were based
on rigid registration between preoperative CT bone surface

Fig. 2 Intraoperative sensing and imaging for orthopaedic applications
of statistical modeling. Left: 3D digitizers need bone surface exposure to
digitize it. Middle: X-ray imaging does not involve any incision to ob-
tain bone shape information although X-ray irradiation is involved. Right:
Ultrasound imaging is a non invasive method to obtain bone shape infor-
mation although it field of view is narrow.

and intraoperative 3D positions on the actual bone surface
acquired by a 3D digitizer. However, preoperative CT scans
were not clinical routine in most orthopedic surgeries, espe-
cially in western countries. Eliminating the requirement of
preoperative CT scans was essential for wide spread of sur-
gical navigation in orthopedics. In order to intraoperatively
recover 3D bone shapes, three modalities, 3D digitizer, 2D
X-ray, and US have been used in combination with statisti-
cal modeling approaches. The statistical shape model and its
extension have been used for modeling bone shape as well
as density distribution. The application targets have been
mainly the knee, hip, and spine. Most of the methods are
intended to be used for an intraoperative reconstruction of
bone structures which are fed to computer-navigation sys-
tems. Figure 2 summarizes orthopedic applications using
three main intraoperative sensing and imaging devices.

2.1 3D Digitizer

One of the pioneering works on intraoperative 3D shape
recovery of the bones without using preoperative patient-
specific data was done by Fleute et al. [11], [12]. In order to
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realize surgical navigation without preoperative CT, a statis-
tical shape model (SSM), which is also known as an active
shape model (ASM) [13], was applied to anterior cruciate
ligament (ACL) surgery [11], [12]. In this application, the
SSM of the distal femur was fitted to intraoperatively dig-
itized 3D positions to reconstructed the bone shape. Ten
femur datasets were used to construct the SSM of the distal
femur, and the method was tested on the patients. The ac-
curacy was evaluated by residual RMS (root mean square).
This method was extended to intraoperatively reconstruct
the proximal tibia as well as the distal femur and integrated
into a surgical navigation system for total knee arthroplasty
(TKA) [14]. This system provided a standard of so-called
image-less navigation systems, which do not require any
preoperative and intraoperative patient images.

2.2 2D X-Ray Imaging

A portable 2D X-ray imaging system, which is called a
“C-arm” system, is typically used in orthopaedic surgeries.
A camera-calibrated and position-tracked C-arm system is a
useful intraoperative tool for acquiring patient anatomy in-
formation. Recovery of 3D bone shapes and density distri-
butions by combining 2D X-ray images and statistical mod-
els have been addressed. The problem is categorized in
a class of nonrigid 2D/3D registration. Regarding techni-
cal aspects inherent in 2D/3D registration such as similarity
measures, matching features, and optimization methods, a
recent survey paper [15] will be helpful. Here, we also de-
scribe methods developed for diagnostic 2D X-ray images
which are suitable for application to intraoperative X-ray
images.

Methods are classified into two categories. One deals
with shape recovery, and the other both shape and density
distribution. Some recent works of the former category do
not require camera calibration of X-ray imaging. Regard-
ing shape recovery, the initial trial of reconstruction from
multiview X-ray images was done for the distal femur using
SSMs by Fleute et al. [16] although the method was eval-
uated only by simulations, and the method was applied to
the vertebrae [17]. Benameur et al. applied the SSM to the
vertebra reconstruction from two-view images by introduc-
ing the regularization term defined as Mahalanobis distance
from the average shape combined with the likelihood term
of contour distance [18], [19], and further extended to deal
with scoliotic vertebrae by extending the formulation to hi-
erarchical SSMs [20], [21]. In these works, validations were
done by dry bones, cadavers, and patients. The proximal
femur and pelvis have also been targeted by SSM-based
shape reconstruction from two-view (or multi-view) X-ray
images [22]–[25]. Among them, Zheng et al. combined
SSMs (Mahalanobis regularization) with the regularization
using Mercer kernels [26] to further improve the reconstruc-
tion accuracy [24]. More recently, 3D shape reconstruction
from a single uncalibrated X-ray image was developed for
the pelvis [27], [28] and vertebra [29].

Regarding reconstruction of shape and density

distribution, the research was initiated by Yao et al. in
2000 [30]. The series of researches targeted the pelvis
and proximal femur [30]–[34]. A tetrahedral mesh den-
sity model was used for representing both shape and den-
sity distributions [31], and PCA was simultaneously ap-
plied to both of them to construct statistical shape and den-
sity model (SSDM) [32]. In the latest work, the femur in
which bone cement was injected was tomographically re-
constructed from incomplete projection datasets by using
SSDM [33], [34].

2.3 Ultrasound Imaging

Since ultrasound (US) is portable and noninvasive modal-
ity, it is particularly suitable for intraoperative use. It has
been utilized for soft tissue imaging but its bone imaging
was not regarded as suitable for diagnostic purpose because
US does not penetrate bone tissues. For surgical navigation
purpose, however, a tracked and calibrated US can be used a
non-invasive position data acquisition tool of bone surfaces
instead of 3D digitizers and calibrated C-arm systems. The
advantages of US are non-invasiveness and portability while
the main disadvantage includes unclearness of bone bound-
aries and dependence of image quality on operators as well
as patients. The initial validation of a US-based method was
done for recovery of the cadaveric femur and pelvis using
statistical deformation models (SDMs) by Chan et al. [35].
The SDM is regarded as a modified version of SSM and
constructed from one reference pair of intensity and label
images and a number of deformation fields obtained by non-
rigid registration of each intensity image with the reference
intensity image. SDM is regarded as an approximation of
SSM. Considering accuracy and sparseness of US data,
SDM is a practical choice because time-consuming prepa-
ration of a number of label images is not required. Through
cadaveric validation, 3 or 4 mm accuracy was demonstrated.
Its detailed descriptions are found in [36]. While the above
works ([35], [36]) required a wide area of dense US scans
which were time-consuming, Talib [37] and Rajamani [38]
developed a method for recovery from sparse data and ap-
plied to the proximal femur, which was further extended to
combine the smoothness constraint using Mercer kernels to
improve the accuracy although experiment using US data
was not conducted. [39]. More recently, SSM-based shape
reconstruction using 3D US data was also applied to the
lumbar spine for needle insertion purpose [40].

In the above, shape recovery of the whole 3D shape of
the bone was addressed. Because an US probe is scanned
manually, it is a time-consuming task even using a 3D probe
to scan the probe so as to cover the whole shape. This point
is a limitation for clinical application. In the total hip arthro-
plasty (THA) surgery, determining the anatomical coordi-
nate system of the pelvis is required to define the orientation
of the acetabular cup implant. Instead of whole shape recov-
ery, a small number of small local ares are scanned for the
coordinate system determination. These areas are typical
anatomical landmarks (pubic symphysis, left and right an-
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terior superior iliac spines) for palpation in clinical routine.
Therefore, the palpations are naturally followed by US scans
in the surgical procedure. Foroughi et al. first addressed
this problem [41], and attained clinically acceptable accu-
racy in dry bone and cadaver experiments. Schumann et al.
applied patch-SSMs suitable for modeling multiple local ar-
eas for pelvis coordinate system determination in addition to
sound speed compensation in SSM-fitting to US data [42],
[43]. One problem of SSM-fitting of US data is how to de-
termine the bone surface edges in the US images. Although
sophisticated automatic edge detection methods from US
images were studied [44], this problem is still under inves-
tigation. Ghanavati et al. developed a SSM-fitting method
which does not require pre-segmentation of US images by
direct local volume matching [45].

3. Motion and Deformation

Statistical approach is also applied to modeling of organ mo-
tion and deformation during therapy. Intraoperative imaging
is commonly used to observe organ motion and deformation.
2D X-ray imaging and ultrasound imaging are conventional
modalities for this purpose. However, 2D X-ray imaging has
a risk of radiation exposure and it can acquire only 2D pro-
jection image. Ultrasound imaging can acquire even a 4D
image recently, but it is not common and the field of view
is not so large. These intraoperative images are sparse, lim-
ited field of view, and less quality, and thus they are some-
times insufficient to understand or reconstruct 3D organ mo-
tion. The statistical deformation model provides bases of
parametric representation of organ motion. By combining
the statistical deformation model with the intraoperative ac-
quired patient-specific information, dynamic organ motion
and deformation of the entire organ can be reconstructed.
After reconstruction, by applying the reconstructed motion
to the preoperative 3D image, you can see the organ motion
with the higher quality preoperative 3D image. Davatzikos
et al. proposed a framework of the statistical deformation
model based on principal component analysis of displace-
ment vector fields, which is extension of the statistical shape
model [46].

In this section, we deal with the application of the sta-
tistical deformation model (SDM) to intervention. There
are two main approaches to create a SDM. One is 4D im-
age based approach, and another is biomechanical modeling
based approach. In the 4D image based approach, a SDM
is constructed from displacement vector fields extracted by
inter-frame registration on the 4D image, in which actual or-
gan deformation is recorded. The 4D image based approach
is applied to the modeling of motion and deformation which
can be caused easily at the time of image acquisition (e.g.
respiratory motion). On the other hand, in cases where it
is difficult to cause organ deformation beforehand (e.g. de-
formation caused by surgical operation), the biomechanical
modeling approach is employed. This section focuses on
the 4D image based approach and then the biomechanical
analysis based approach is described in the next section. As

already mentioned, the 4D image based approach is suit-
able for respiratory motion modeling. In the following sub-
sections, we describe about SDM of respiratory motion of
the lung and liver. The 4D image based SDM is also ap-
plied to the brain and the heart. Although statistical defor-
mation models have been applied to long term changes of
the anatomical structures in the brain [47]–[49] and the car-
diac motion [50], [51], these studies aim to diagnostic pur-
pose but not to intervention. Therefore, this paper does not
describe them.

3.1 Lung

According to advance of radiation therapy technology, pre-
cise irradiation planning based on patient’s 3D image and
its execution are performed recently. Respiratory motion is
the main factor of uncertainty in radiotherapy planning for
the lung cancer, and then it reduces effectiveness of irradi-
ation and causes larger irradiation margin. One approach
to improve irradiation accuracy is estimation of cancer mo-
tion by using a prior knowledge of respiratory motion. The
aim of the application of a SDM to respiratory motion is
to predict near-future motion of the target organ from the
previously obtained 4D image of respiratory motion. Be-
cause respiratory motion is repetitive and nearly cyclic, it is
considered as a typical application of SDM. A statistical de-
formation model (SDM) reconstructed from extracted dis-
placement vector fields from 4D image data are employed
to represent variation of deformation caused by respiration.
Zhang et al. developed a patient-specific respiratory motion
model [52], [53]. In this method, the diaphragm position
was incorporated into the motion model to express temporal
correlations between the organ shape and diaphragm posi-
tion. The motion model was applied to radiation treatment
planning [52] and correction of motion artifacts in cone-
beam CT [53]. Liu et al. estimated a displacement vector
field from the lung shape at arbitrary phase based on the as-
sumption that there is linear correlation between the shape
and the motion [54]. Ehrhardt et al. proposed a inter-patient
mean motion model [55], [56]. They employed spirometry
to estimate a scaling factor of the lung volume when instan-
tiating a patient-specific motion from the model. As another
application except radiation therapy, Barnett et al. reported
application to respiratory gated PET scan to reduce artifacts
in PET/CT [57]. Nakamoto et al. also proposed statisti-
cal modeling of bias error on registration caused by inter-
nal deformation that accompanies patient’s position change
to improve accuracy of registration for computer assisted
surgery [58].

3.2 Liver

Since the liver is across the diaphragm from the lung, the
liver also moves and deforms greatly with respiration. As
well as the lung, the respiratory motion and deformation
model of the liver is studied for assistance of the focal
therapy of the liver. King et al. [59] and Blackall et al. [60]
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developed statistical respiration models, which were con-
structed from patient’s own preoperative 4D CT image.
King et al. also proposed a method for estimation of in-
traoperative liver shape by registering the statistical model
to an intraoperative 2D ultrasound image. von Siebenthal
et al. [61] developed an inter-subject statistical respiration
model, which was constructed from 4D CT images of mul-
tiple subjects. In their method, a 3D surface model of each
subject was divided into small cells based on anatomical fea-
tures on the liver, and then it was registered to a reference
shape model by using correspondence of the cells. Their
method includes drift prediction. The organ drift is non-
periodic deformation and independent of the fitful breath-
ing motion. Detection of the organ drift is difficult by us-
ing external sensors. Arnold et al. [62] developed a statis-
tical exhalation drift model. They reported that estimation
with the drift model showed significant improvement com-
pared to estimation without the drift model. Lee et al. pro-
posed dynamic shape instantiation, which can recover the
entire 3D liver shape from the statistical model and ultra-
sound images acquired at limited imaging planes [63]. The
relationships between the 3D surface model and very small
subset of points on the liver contour appeared in an ultra-
sound image are trained by partial least squares regression
(PLSR). The selection of suitable imaging planes results in
the improvement of the accuracy and robustness of the shape
estimation [64].

4. Biomechanics

Biomechanical modeling is the technique for accurately
modeling the dynamic behaviors of living systems and their
surrounding environment by basic mechanical properties. In
the medical fields, biomechanical modeling is used to simu-
late the behaviors of target tissues whose experimental mea-
surements are difficult or impossible. The simulation data
provides significant benefits to diagnosis, surgical simula-
tion and planning [65], [66]. Moreover, biomechanical mod-
eling is used as constraints imposed on a non-rigid registra-
tion to avoid undesired registration. Owing to these advan-
tages, biomechanical modeling has become a powerful tool
in medical diagnosis and surgery.

Among the approaches for biomechanical modelings,
the finite element method (FEM) can achieve a more physi-
cally realistic simulation for object behaviors with linear and
nonlinear material properties. On the contrary, the FEM-
based simulation is very time-consuming. Especially, the
problem becomes serious for the surgical navigation and the
interactive surgical simulator which requires real-time FE
analysis. To solve this problem, the conventional methods
using FEM [67], [68] introduce the assumptions of infinites-
imal deformation and linear elasticity. There are many FEM
approaches using the assumptions described in the survey
paper [66]. Unlike such approaches, this section describes
the biomechanical modeling combined with statical mod-
eling and machine learning. One of the combination is to
use simulated data by biomechanical modeling as sample

Fig. 3 Estimation of organ motion and deformation by combining
biomechanical modeling with statistical modeling and machine learning
approaches.

data for constructing statical models of motion and deforma-
tion of body organs including bone, brain and liver (Fig. 3).
Such statistical model is called biomechanical based statis-
tical model (BSM).

4.1 Orthopedics

The achievement of FE analysis with acceptable accuracy
requires the accurate geometry and material property of tar-
get organs. As described in Sect. 2.1, geometrical mod-
els of bones are accurately constructed from medical im-
ages. In addition, some works estimate bone material prop-
erties by the intensity of the bone CT images [69]. Ow-
ing to these reasons, since 1970’s, the FE analysis has
been a powerful tool in the filed of orthopedics surgery
and diagnosis [70]. Querol et al. [69] designed a preopera-
tive planning system of orthopaedic implant which predicts
stress and strain data over bones by FE analysis. The sys-
tem obtained the bone model by combining its statistical
model with CT images. Gill et al. [71] developed a method
for identifying a target spine by registering intra-operative
spinal CT images to the virtual images derived from pre-
operative CT images. In the registration, FE analysis is in-
corporated into their registration algorithm to constrain the
registration and accomplish anatomically acceptable align-
ment. Fitzpatrick et al. [72] developed a method for analysis
implanted patellofemoral mechanics by combining a proba-
bilistic and PCA approach. Their approach describes the re-
lationship between input parameters and biomechanical out-
put measurements. The input parameters include the align-
ments of patellar and femoral components while the out-
put measurements are kinematics measurements and contact
mechanics measurements.

4.2 Neurosurgery

One of the most widely used biomechanical modeling in
neurosurgery is to estimate the deformation of brain struc-
tures caused by intraoperative brain shift [6]. The deforma-
tion leads the distortion of brain structures determined from
the preoperative images. In this case, the direct use of the
preoperative surgical planning is inappropriate for image-
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guided neurosurgery. The problem is solved by deforming
the preoperative brain to intraoperative data based on BSM,
which predicts the brain deformation. Dumpuri et al. [73]
predicted intraoperative brain deformation by combining a
statistical model of brain shift and sparse 3D points on the
intraoperative brain surface measured by laser range scan-
ner. Using the brain deformation model [74], their statistical
model is constructed by a range of possible brain deforma-
tion simulation by changing boundary conditions.

Another application using biomechanical modeling is
to construct patient-specific brain atlas for clinical diagno-
sis and preoperative planning. The patient atlas construction
is based on the deformable registration of traditional atlas to
patient images. Mohamed et al. formulated the finite ele-
ment modeling of the brain structure deformation caused by
the mass effect of bulk brain tumor growth [75], and fur-
ther applied their FE modeling to the deformable registra-
tion method of the brain atlas to a patient brain with a bulk
tumor [76].

4.3 Other Soft Tissues

BSM is introduced to the simulation for the deformation
of soft tissues including skin and breast whose shapes are
changed largely. The simulation is used for image-guided
navigation system, and surgical training simulator. In the
former, recent navigations combine BSM with 2D shape
acquired by transrectal ultrasound (TRUS) to estimate in-
traoperative 3D shape of the tissues. Mohamed et al. [77]
first developed the navigation which predicts intraopera-
tive prostate shape using BSM and the position and pose
of TRUS. Practically, the 3D intraoperative shape is con-
structed by minimizing the difference between 2D shape de-
rived from the ultrasound and 3D shape estimated by BSM.
Further, Hu et al. [78]–[80] improved the accuracy of the
shape estimation by incorporating two components into the
approach in [77]. One is to build BSM from a large num-
ber of FEM simulations by using FE models of the prostate
gland, the pelvis, and the bladder. The simulation is made
by changing the material properties of the models and the
boundary conditions including the position and size of the
pelvis relative to the prostate. The other is to perform a
robust registration of the shape estimated by the SMM to
TRUS images. The method in [79] was applied to five pa-
tients’ TRUS images while the method in [80] was verified
by eight patients’ MR images. Moreover, Hu et al. [78] de-
veloped a efficent SSM constrution by simplifying the com-
plex biomechanical modeling without loss of the estimation
accuracy. Tanner et al. [81] developed a method for regis-
tering multimodal images by using the BSM which captures
the motion and deformation of a breast compressed by two
plates in the mammography. Their method was validated
by using Xray-mammograms, and CT and MR images of a
patient.

The shape estimation using BSM requires iterative
computations. To solve the problem, Lee et al. [63] in-
troduced partial least squares regression (PLSR) which

describes the relationship between 2D liver contours as in-
put data and 3D liver shape as output data. The various
shape models are generated by non-linear FEM. Since the
operations in PLSR are matrix multiplication, the efficient
shape estimation is achieved.

Biomechanical modeling provides a powerful tool to
construct surgical training simulator for the treatment of
soft tissues. In the simulator construction, naturally, the
real-time estimation of tissue deformation sequence is re-
quired. Moreover, since input data used in the estimation
depends on the design of the simulator, it is necessary to
model the relationship between the input data and its cor-
responding deformation. He et al. [82], [83] developed a
BSM-based method for efficiently estimating bone-related
deformation [83] and material parameter of soft tissue [82]
by dividing BSM into two parts: the boundary part related
to the bone, and the non-boundary part. Sieera et al. [84] es-
timated the uterine deformation in real-time which is caused
by the pressure of the distension fluid during hydrometra.
The real-time estimation is achieved by the linear combi-
nation of the uterine deformation precomputed offline by
FEM. Further, Harders et al. [85] extended their method to
treat various uterine shapes.

A neural network is useful to model the relationship
between arbitrary input parameters and its corresponding
outputs including 3D deformation shapes. To learn the re-
lationship, the network is trained by using a large number
of training data simulated by FEM. Kahalaji et al. [86],
[87] combined BSM with the network which outputs the 2D
shape deformation of prostate gland and 2D stress field of
the shape when the positions of the landmark on the prostate
contour and the material property assigned to the FE model
are give. Morooka et al. applied the neural network to esti-
mate the liver deformation by forces caused by surgical in-
struments [88], and further extended their method to apply
the stomach deformation with large deformation [89]. The
network training using a large dataset may not be converged.
To solve the problem, the large dataset is partitioned into
several small sub-datasets, and the simulator is constructed
by multiple networks, each of which is trained by using its
corresponding sub-dataset. When external forces caused by
surgical instruments are used as input data of the simulator,
the approximation or the imitation of the FEM simulation
may be achieved by using mass-spring model [90] and Free-
Form Deformation (FFD) [91]. In this case, the parameters
in the mass-spring and FFD models are adjusted by fitting
the deformations of these models to the FEM simulations
used as training data. Mass-spring model and FFD may al-
low real-time deformation because of their computationally
efficient. However, the deformation using these methods is
inaccurate compared with the original FEM.

5. Optimizing Intervention

Computer assisted intervention mainly consists of two com-
ponents. One is intraoperative assistance and the other
preoperative planning. In the previous sections, issues of
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estimating anatomical shape, motion, and deformation for
intraoperative assistance have been addressed. In this sec-
tion, statistical modeling and machine learning approaches
to preoperative planning are addressed. A lot of software
systems for 3D interactive simulation and planning of in-
terventional procedures have been developed, which are
mainly based on technologies of visualization, virtual re-
ality, image analysis, and so on. Although these systems
provide intuitive, objective, and quantitative information to
the surgeons, the optimization of interventional planning is
performed by the surgeons. By introducing statistical mod-
eling and machine learning, the systems are expected to
provide the optimized planning incorporating a number of
criteria which are in trade-off relations or may not be ex-
plicitly recognized even by experienced surgeons. Statisti-
cal approaches provide opportunities of fully utilizing the
database of past surgical cases, in which information on
patient anatomy and pathology as well as surgeons’ exper-
tise are embedded. In the following, recent achievements
of these approaches are described by focusing on particular
clinical purposes.

5.1 Biopsy Planning

5.1.1 Prostate Cancer Biopsy

Intraoperative assistance ensures accurate positioning of
preoperatively planned biopsy locations. This assistance
will be obviously useful for accurate biopsy. From the clin-
ical viewpoint, however, the effectiveness of biopsy may be
evaluated by the correct diagnosis ratio of the target disease
by biopsy rather than positional accuracy of biopsy loca-
tions. For the biopsy of prostate cancer, Shen et al. proposed
a statistical modeling approach to solve a problem which
is more directly related to improving the effectiveness of
biopsy from the clinical point of view [92], [93]. The prob-
lem is as follows: Given the prostate shape of the patient,
find a fixed number of optimal biopsy locations minimizing
the probability to miss the cancer tissue if the patient has it.
In order to solve the problem, the probabilistic atlas was in-
troduced which represents the prior probability map of can-
cer existence. Pathological images were used to obtain the
distributions of cancer existence, which are typically unob-
servable or only ambiguously imaged in the clinical images.

Figure 4 shows the schematic diagram for derivation
of the optimal prostate biopsy planning. The processes of
constructing the probabilistic atlas are as follows. (1) Train-
ing datasets of labeled patient 3D images are prepared each
of which includes the prostate region and cancer regions.
The training datasets are obtained from pathological images.
(2) The cancer regions in each training dataset are mapped
to the standardized prostate space (defined as its average
shape) so that the prostate region is registered to the aver-
age shape. (3) All the mapped binary cancer regions are
averaged to construct the probabilistic atlas, which repre-
sents the existence probability of the cancer tissue at each
voxel. Shen et al. determined the optimal biopsy location

Fig. 4 Optimal prostate biopsy planning based on probabilistic atlas of
pathological evidence.

in the standardized prostate space based on the probabilistic
atlas [93]. If only one location is used for biopsy, the opti-
mal one has the highest probability in the probabilistic atlas.
To select the second location, the probabilistic atlas is con-
structed for the updated datasets in which the canter tissue
does not exist at the first location, and the second optimal
location is determined. This process is repeated until the
fixed number. The method was extended so as to deal with
needle place uncertainty and combined with SVM-based ul-
trasound image segmentation [94], validated clinically [95],
and further extended so as to deal with estimating cancer
volume and Gleason Score by combining with SVM [96].

5.1.2 Optical Biopsy

Another biopsy application is retargeting in optical biopsy,
which enables in vivo visualization of the tissues at mi-
croscopic scale without removing tissue samples. In the
gastro-intestinal endoscopic optical biopsy, comparison at
the same locations in a few month intervals is necessary.
For the relocation of biopsy targets, Atasoy et al. applied
manifold learning to dimensional reduction in representing
endoscopic video sequences for the clustering and classi-
fication of the sequences [97], [98]. The developed low-
dimensional representations are expected to facilitate tar-
geted optical biopsy.

5.2 Implant and Reconstructive Surgical Planning

A large number of surgeries are categorized in a recon-
structive surgery, which is regarded a surgery to recover the
original anatomy. By anatomy recovery, functional recov-
ery is expected to be attained as a result. Many of implant
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surgeries including artificial joints and stents are performed
to artificially reconstruct the original anatomy. Bone
fracture reduction is also one of reconstructive surgery.
Statistical shape models (SSMs) and other statistical mod-
els can be used for prediction of the original anatomy or the
best implants realizing it from the pathological anatomy or
surrounding health anatomy. In the following, SSM-based
approaches to optimizing surgical planning are described for
each clinical purpose.

5.2.1 Total Hip Arthroplasty

Total hip arthroplasty (THA) is particularly suitable for sur-
gical CAD/CAM paradigm [99]. In the last two decades, the
CAM (computer aided manufacturing) part, that is, surgical
navigation and robotics, for THA has been well-developed
based on registration between intraoperative digitized sur-
face data and preoperative CT surface model. Now that the
preoperative plan is accurately executed intraoperatively us-
ing the CAM system, the substantial part of THA surgery
is now shifted to the CAD part, that is, how preoperative
planning is performed. Although interactive systems have
been developed for THA planning [100], it still depends on
surgeon’s expertise. Statistical shape modeling of the rela-
tions between the host bone shapes and implant is a promis-
ing approach for accurate and objective preoperative plan-
ning. Viceconti et al. firstly automated the planning of the
femoral stem implant of THA by using one reference plan-
ning dataset consisting of 3D CT data and the stem planned
on it [101]. Given patient 3D data, scaled rigid registration
between reference 3D CT data and the patient 3D data is
performed, and then the estimated scale and rigid transfor-
mation parameters provide difference from the reference in
the stem size and pose. Nakamoto et al. proposed a sta-
tistical atlas of the stem implant of THA to automate its
planning [102]. This statistical atlas was the average dis-
tance map on the implant surface to the medullary cavity
of the femur, which is derived from a large number of past
plans prepared by an experienced surgeon. Given the pa-
tient model of the medullary cavity surface, the size and
pose of the stem which minimize the differences in the dis-
tance map between the statistical atlas and the actual pa-
tient. Figure 5 shows the schematic diagram of automated
THA planning based on statistical atlases. Otomaru et al.
extended Viceconti’s method so as to select the optimal ref-
erence plan from a number of planning datasets and com-
pared it with Nakamoto’s method using the medullary cav-
ity surface obtained by fully-automated segmentation [103].
Otomaru et al. also automated the acetabular cup planning
by using the coupled SSM of the patient pelvis and im-
planted cup [104] and further combined the merged SSM
with the residual bone thickness map similar to the distance
map [105] as well as combined with SSM-based 2D-3D re-
construction so as to perform automated THA planning from
2D X-ray images [106]. More recently, Kagiyama et al.
automated the all the implant components in THA includ-
ing the acetabular cup, femoral stem, and neck component

Fig. 5 Automated total hip arthroplasty (THA) planning based on statis-
tical models constructed from THA plan database.

by introducing statistical models of the joint functionality
parameters such as the range of motion and limb length
difference [107].

In the automated THA planning described above, the
statistical models were used to determine the best-fit im-
plant size and position for the specific patient. More re-
cently, Kozic et al. further apply the statistical models to
determine the optimal implant shape so as to fit as many pa-
tients as possible [108], [109]. The patterns of bone variabil-
ity among patients are analyzed to improve implant fitting.
Results are presented for proximal human tibia [108], [109].
Further, it was shown that the optimized shape can minimize
intraoperative deformation of the implant [110].

5.2.2 Other Applications

The stent is an implant to recover the original shape of tubu-
lar anatomical structures from a deformed one such as steno-
sis and aneurysm. Pinho et al. predicted the original tra-
chia shape by fitting SSMs to healthy parts of the trachea
and used the predicted shape for optimal stenting as well as
stenosis quantification [111], [112].

Fracture reduction is another good application of SSMs
which are utilized for representing recovered original bone
shapes before fracture. The applications to fracture re-
duction planning of the proximal femur and pelvis have
been investigated [113], [114], where the problem was for-
mulated as finding the best pose parameters of the bone
fragments and shape parameters of the SSM, representing
the original bone shape, which best fit to the surfaces of the
bone fragments. Gong et al. combined the above approach
with 2D-3D reconstruction to realize 2D X-ray image based
fracture reduction planning of the wrist joint bones whose
shapes are simpler than the hip joint bones [115].

SSMs are applied to patient-specific catheterization
planning. The shape of the guidewire, which precedes the
catheter, is crucial to ensure smooth insertion to the target
branch. In order to effectively reduce the search space, the
guidewire shape is modeled as SSM which was constructed
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from the training datasets of guidewire shapes generated by
experienced interventional radiologists [116]. Furthermore,
physics simulations of catheterization were combined to ob-
tain the optimal guidewire shape [117].

5.3 Radiation Therapy

Statistical modeling in radiation therapy planning has been
mainly applied to segmentation and motion estimation of
the target and organs at risk (OARs) from 3D data [118]–
[120]. In addition, Prince et al. utilized SSMs for obtain-
ing coverage probability map representing the uncertainties
during the radiotherapy process [121]. More recently, inten-
sity modulated radiation therapy (IMRT) has become avail-
able, by which more precise radiation planning is possible.
By the optimized radiation using IMRT, it is possible to de-
liver a higher dose of radiation to the tumor while sparing
nearby OARs. However, optimized planning which realizes
such an ideal radiation also becomes more complex. Simari
et al. proposed to use the radiation therapy plan database of
past patients for efficient optimization of the plan of a new
patient using a statistical approach [122]. A shape relation
descriptor, the overlap volume histogram (OVH), was pro-
posed [123] and the statistical features of OVH were used to
query for the lowest achievable dose [122].

6. Conclusion

We have described a survey of applications of statistical
modeling and machine learning to computer assisted med-
ical intervention. The reviewed articles are mainly related
to intraoperative recovery of shape, motion, and deforma-
tion of anatomical structures from incomplete and sparse
data as obtained during intervention. Statistical modeling
and machine learning have been effectively used for mod-
eling prior knowledge required for their recovery. Biome-
chanical simulations are also combined with intraoperative
data to recover biomechanically-justified deformations even
when boundary conditions are incomplete through statistical
modeling and machine learning.

One obvious important goal of computer assisted inter-
vention is to optimize the intervention. Statistical model-
ing and machine learning have also been effective for the
optimization. As a future perspective, this direction will
greatly expand due to accumulation of large amount of high-
resolution and accurate datasets during preoperative imag-
ing and examination, intraoperative operation and sensing,
and postoperative follow-up. These datasets will be used for
training datasets of machine learning to optimize the inter-
vention. The articles reviewed in this paper utilized only a
part of these datasets, and future researches will try to fully
utilize them to optimize the intervention so as to provide the
best outcome.
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