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SUMMARY Computer-aided diagnosis (CAD) systems on diffuse lung
diseases (DLD) were required to facilitate radiologists to read high-
resolution computed tomography (HRCT) scans. An important task on
developing such CAD systems was to make computers automatically rec-
ognize typical pulmonary textures of DLD on HRCT. In this work, we
proposed a bag-of-features based method for the classification of six kinds
of DLD patterns which were consolidation (CON), ground-glass opacity
(GGO), honeycombing (HCM), emphysema (EMP), nodular (NOD) and
normal tissue (NOR). In order to successfully apply the bag-of-features
based method on this task, we focused to design suitable local features
and the classifier. Considering that the pulmonary textures were featured
by not only CT values but also shapes, we proposed a set of statistical
measures based local features calculated from both CT values and eigen-
values of Hessian matrices. Additionally, we designed a support vector
machine (SVM) classifier by optimizing parameters related to both kernels
and the soft-margin penalty constant. We collected 117 HRCT scans from
117 subjects for experiments. Three experienced radiologists were asked
to review the data and their agreed-regions where typical textures existed
were used to generate 3009 3D volume-of-interest (VOIs) with the size of
32×32×32. These VOIs were separated into two sets. One set was used for
training and tuning parameters, and the other set was used for evaluation.
The overall recognition accuracy for the proposed method was 93.18%.
The precisions/sensitivities for each texture were 96.67%/95.08% (CON),
92.55%/94.02% (GGO), 97.67%/99.21% (HCM), 94.74%/93.99% (EMP),
81.48%/86.03%(NOD) and 94.33%/90.74% (NOR). Additionally, experi-
mental results showed that the proposed method performed better than four
kinds of baseline methods, including two state-of-the-art methods on clas-
sification of DLD textures.
key words: pulmonary textures classification, diffuse lung diseases, bag-
of-features, computer-aided diagnosis (CAD)

1. Introduction

Diffuse lung diseases (DLD) refer to a heterogeneous group
of abnormal conditions or diseases which spread out in large
areas of lungs [1]. These diseases typically have similar
clinical, radiographic, physiologic, and/or pathologic fea-
tures. There are two common anatomically imaging modal-
ities, X-ray chest radiography and computed tomography
(CT), which are routinely used in the detection and diag-
nosis of DLD. With the development of techniques on CT,
high-resolution computed tomography (HRCT) has played
important roles in recent years [2]. Thin slice CT is able to
give detailed appearances on pulmonary patterns. This fa-
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cilitates the diagnosis of DLD, but a huge number of CT
slices also requires radiologists to take much more time on
reading. Additionally, objective identification of pulmonary
textures has not being established in current clinical proto-
cols. Since visual inspection is being carried on according
to radiologists’ experiences, subjective differences are in-
evitable. Considering both of the two aspects, a quantita-
tive computer-aided diagnosis (CAD) system is required to
give a second opinion to facilitate detection and diagnosis of
DLD.

In the past ten years, there have been many researches
to develop CAD systems to automatically analyze pul-
monary textures on HRCT [3]. Usually, such a CAD sys-
tem can be divided into two steps. First, a segmentation
method is applied to extract the whole lung regions. Then,
voxels inside the segmented regions are automatically as-
signed to labels which refer to the predefined classes of tex-
tural patterns. For the second step, it can be generalized as
a pattern recognition problem of texture classification. Usu-
ally, a region/volume of interest (ROI/VOI) surrounding a
under-processing pixel/voxel is constructed and classifica-
tion methods are applied on it. In this paper, we only focus
on how to develop a method to automatically classify pul-
monary textures. Segmentation of lungs with severe diffuse
disorders in recent years can be referred to the works [24],
[25].

Researches on the classification of pulmonary textures
can be found in a lot of works [4]–[16]. These methods
could be grouped in the aspects of ROIs (VOIs), features,
classifiers and textural types. In the majority of these works,
2D square-shaped ROIs are often adopted [4]–[11]. Re-
cently, 3D cubic-shaped VOIs are used because textural pat-
terns can be more discriminative [13]–[16]. An interesting
work is given in the work [12], where irregular-shaped 2D
ROIs clustered on homogenous textures show that they are
more powerful than the 2D square-shaped ROIs. For the
classifiers, all of the works adopt mature techniques, such
as the Bayesian classifier [4], [13], [14], the artificial neural
networks (ANN) [5], [9], the nearest neighbor (NN) classi-
fier [6], [11], [12], [15], [16], and the support vector machine
(SVM) [6]–[8], [10]. The types of pulmonary textures are
usually determined by the purpose of CAD systems. For
the identification of general DLD patterns, the number of
textural types is relatively more. For example, five types
are considered in [6], [16], six types are considered in [4],
[7], [12] and seven types are considered in [5]. The defini-
tions of the pulmonary textures are similar and differences
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rely on the data or the purpose of clinical application. For
CAD systems on a specific purpose, the number of textural
type is relatively few. For example, only two types of tex-
tures (mild and normal) are considered for the detection of
early interstitial lung diseases [9], two kinds of emphysema
textures and normal textures are considered for chronic ob-
structive pulmonary disease (COPD) [10], [11], and a subset
of three kinds of DLD textures is considered for interstitial
pneumonia [15].

Almost all of the existing methods are dedicated to de-
signing discriminate features for their problems. Feature
extraction is a critical problem in pattern recognition. If
features are more discriminative, classification becomes eas-
ier. Features can be designed by using one or several of
the following measures on gray values [9], [15], such as sta-
tistical measures on histogram distributions, measures on
gray-level co-occurrence matrices (GLCM) and measures
on gray-level run-length matrices (GLRLM). More power-
ful features can be designed if these measures are combined
with some other cues on geometrical information, such as
fractal features [4], [13], [14] or shapes [7], [8]. There are
also works [6], [12], [16], where the filter-bank based fea-
tures are calculated from several scales and orientations and
then sequential forward search is used to select the most
discriminate features. Another work designs the compact
features for the specific task on hands considering both of
the gray-values and geometrical information [5]. There are
also works considering invariant-features, such as rotation-
invariant local binary patterns (LBP) are adopted to distin-
guish the normal tissues from two kinds of emphysema for
COPD [11].

Recently there have been researches to apply new de-
veloped techniques in computer vision to design more dis-
criminative features for the classification of pulmonary tex-
tures, taking examples of a bag-of-features technique [10]
and a signature-matching technique [16] reported recently.
Both of the two methods are originally used in image re-
trieval, i.e. [19] and [26] respectively. They are similar in
methodology since both of them require clustering meth-
ods (i.e. k-means) to assign a large number of pre-extracted
local features into some clusters. According to the num-
bers of features assigned to each cluster, a histogram is cal-
culated and treated as a discriminative feature for classifica-
tion. The difference is that the clustering is only operated
once in the training stage for the bag-of-features method.
However, the clustering is operated on each sample every-
time for the signature-matching method. The bag-of-feature
method is firstly applied in the work [10] to classify three
kinds of pulmonary patterns (normal tissues, centrilobular
emphysema and paraseptal emphysema) for COPD. The
signature-matching method is applied to classify five kinds
of pulmonary textures of DLD in [16].

In this paper, we try to develop a classification method
for the general DLD textures, including the following six
kinds of textures, consolidation (CON), ground-glass opac-
ity (GGO), honeycombing (HCM), nodular (NOD), emphy-
sema (EMP), and normal tissue (NOR). Their examples

Fig. 1 Examples of six kinds of pulmonary textures to be classified in
HRCT. They are consolidation (CON), ground-glass opacity (GGO), hon-
eycombing (HCM), nodular (NOD), emphysema (EMP), and normal tissue
(NOR).

are given in Fig. 1. We tried both of the works [10], [16],
however obtained unsatisfied results. The bag-of-feature
based method is more efficient in practice than the signature-
matching method, since it only needs the clustering once
in the training stage. In this paper, we adopt the bag-of-
features based method to resolve our problem. We improve
several aspects in order to make it work properly for our
task. Comparing with the work [10], the major differences
rely in the following five aspects. First, our aim to classify
pulmonary textures is for DLD rather than COPD. Accord-
ing to our knowledge, there is no work to apply the bag-of-
features based method to recognize the general DLD tex-
tures. Second, we classify six kinds of textures, much more
than the work [10]. Third, we apply 3D VOIs instead of
2D ROIs in order to get more discriminative features for
classification. Fourth, we propose a new kind of local fea-
tures considering both shapes and CT values according to
textural characteristics. Fifth, we design a powerful SVM
classifier by optimizing both kernels and soft-margin-related
constant.

A preliminary version of this work was published [17].
The major differences against the preliminary version rely
on two aspects. First, we adopt a different experimental set-
ting. Here, we separate samples into the training and testing
sets. We train and optimize parameters of methods on the
training set, and then test the optimally trained method on
the testing set. The way that training and testing samples
are completely blind to each other is more reasonable than
the 20-fold cross validation test adopted in the previous ver-
sion. Second, we compare the proposed method with other
two kinds of the state-of-the-art methods [5], [16] in this pa-
per.

2. The Proposed Method

We proposed a bag-of-features based method to classify the
six typical pulmonary textures on HRCT. A bag-of-features
framework can be divided into three parts, local features cal-
culation, training of a code-book, and training of a classi-
fier. Compared to the work [10], the major differences in
methodology rely on the local features and the classifier. In
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this section, we will describe the proposed method in de-
tails. In order to make it more readable, we firstly introduce
the bag-of-feature framework. Then, we describe the pro-
posed local features and classifier’s training in the following
two subsection.

2.1 Bag-of-Features Approach

The bag-of-features framework can be expressed by
Fig. 2 (a). We separately describe the training and testing
stages of this framework. In the training stage, there are two
kinds of training, the training of a code-book and a classi-
fier. The input of training is a set of VOIs, which is denoted
by Vi j to represent the j-th VOI of the i-th class. For each
VOI, a large number of local features are calculated. Here,
Xi j means the set of local features calculated from the j-th
VOI of the i-th class. The features of different VOIs for all
classes are mixed together, and then a set of clusters’ cen-
ters is calculated by a clustering method. These centers are
called the codebook denoted as C = [c1, c2, . . . , ck], where
k is the number of the clusters. It should be noted that the
input of the clustering can be local features of all of train-
ing VOIs or just a subset of the training VOIs. Usually, this
can not change results much. When the code-book is ob-
tained, local features of each training VOI can be assigned
into their nearest cluster’s centers. The number of local fea-
tures assigned to each cluster gives a histogram for each VOI
to show the frequency of clusters’ centers that local features
belong to. The histogram is denoted by hi j for the training
VOI Vi j. Finally, all of the histograms hi j are treated as dis-
criminative features to train a classifier. In the testing stage,
local features are firstly calculated for a testing VOI. Then,
the pre-calculated codebook is used to assign local features
to each cluster in order to calculate the histogram h. Finally,
the histogram is fed into the trained classifier to get a recog-
nized result. It should be noticed that the codebook is only
trained once in the training stage.

The main idea of bag-of-features approach is to repre-
sent the VOIs by a histogram whose bins are the elements of
the code-book trained from local features. Such a codebook
can be seen as an intermediate layer to interpret VOIs. Since
local features are calculated from limited local regions, each
of them only reflects information of partial objects. Al-
though local features are huge, they are usually clustered
into limited number of centers in high-dimensional feature
spaces. Just as words are basic elements of sentences, such
centers of clusters can also be considered as the basic ele-
ments to represent the underlying objects. Codebook con-
struction can be generalized as a vector quantization prob-
lem. Some clustering methods, such as k-means, are usually
adopted to resolve this problem. The number of clusters (k)
is the parameter determined by experiments.

Local features can be calculated at the regularly sam-
pling grids or at the pre-determined key-point positions. Ac-
cording to the literature [18], there seems to be no evidences
to show which one is better. In this work, we prefer to adopt
the way of regularly sampling grids, since it is easier and

Fig. 2 The proposed bag-of-features based method.

faster. Figure 2 (b) illustrates the regular sampling grids
used in this work. In the preliminary work [17], we adopted
the VOI’s size and the grid step to be 32×32×16 and 4×4×4
respectively, and obtained 9 × 9 × 5 = 405 sampling points.
We consider that it would be more reasonable to use an iso-
sized VOI, so we set the VOI size to be 32×32×32 in this
work. Since we use the same grid step, we can get can get
9×9×9=729 sampling points on each VOI. Local features
are calculated inside local regions, called patches, whose
centers are located at these sampling points. The patch size
is the parameter determined by experiments, either.

In our opinion, the bag-of-features approach is a com-
mon framework. According to different recognition tasks,
the three basic parts, local feature calculation, code-book
construction and classifier should be adjusted in order to
make it achieve better results. In the proposed method, we
use k-means method to train the code-book, just the same as
the work [10]. However, we make the improvements on the
calculation of local features and the training of classifiers in
order to make it work properly for our task. In the next two
subsection, we will describe these two parts.

2.2 Local Features

CT values of a 2D squared patch are rearranged as a vec-
tor to be treated as local features for 2D ROIs in [10], It is
reported that such local features achieved good results for
the recognition of normal tissues and two kinds of emphy-
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sema patterns. We tried this method, but the results were not
satisfied. Therefore, we reconsider about our problem and
design a new kind of local feature which is suitable to our
task.

The categories of pulmonary textures in our work are
much more. Some textural patterns, such as NOR, CON
and EMP, are mainly characterized by CT values. How-
ever, other patterns, such as NOD, are mainly featured by
3D shape information. Since 3D shape information can
not be visualized from 2D slices, 3D VOIs are adopted in
this work. Therefore, local features are calculated from 3D
cubic-shaped patches instead of 2D square-shaped patches.
Combining both of the CT and shape information, we pro-
posed a new kind of local features, whose calculation can
be represented by Fig. 2 (c). At each sampling point, we can
construct a cubic-shaped patch whose center is that sam-
pling point. Each patch is a 3D volume, whose size is a
parameter. Supposing CT values in a patch at a position
x = [x, y, z]T can be represented by f (x). We calculate four
kinds of statistical measures according to Eq. (1) as the fea-
tures reflecting the information of CT values, denoted as
vCT = [mCT,1,mCT,2,mCT,3,mCT,4]T . These four kinds of
statistical measures are mean (m1), standard deviation (m2),
skewness (m3) and kurtosis (m4).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 =
1
N

∑N
i=1 f (xi)

m2 =

√
1

N−1

∑N
i=1( f (xi) − m1)2

m3 =
1
N

∑N
i=1( f (xi)−m1

m2
)3

m4 =
1
N

∑N
i=1( f (xi)−m1

m2
)4 − 3

(1)

where N is the number of voxels in the patch.
Additionally, we use the eigen-values of Hessian ma-

trix to calculate another kind of features to represent the
information of shapes. A Hessian matrix at a position
x = [x, y, z]T can be calculated by Eq. (2).

H(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂x∂z

∂2 f
∂y∂x

∂2 f
∂y2

∂2 f
∂y∂z

∂2 f
∂z∂x

∂2 f
∂z∂y

∂2 f
∂z2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

The 3 × 3 matrix H(x) has 3 eigen-values, which
are λ1, λ2, λ3 listed in a descending order. For each po-
sition of a patch volume, we can calculate these three
kinds of eigen-values. Arranging them by their posi-
tions’ order, we can get three volumes whose component
are the eigen-values. Calculating the same four kinds
of statistical measure according to Eq. (1) respectively on
the three volumes, we can obtain 3 vectors as the fea-
tures reflecting information of shapes. The 3 vectors
are denoted as vλ1 = [mλ1,1,mλ1,2,mλ1,3,mλ1,4]T , vλ2 =
[mλ2,1,mλ2,2,mλ2,3,mλ2,4]T and vλ3 = [mλ3,1,mλ3,2,mλ3,3,
mλ3,4]T respectively. Catenating vCT , vλ1, vλ2 and vλ3,
we get a 16 dimensional feature, denoted as v =

[vT
CT , v

T
λ1, v

T
λ2, v

T
λ3]T , which is able to reflect the information

of both CT values and shapes.
For the proposed local features, the only parameter is

the size of cubic-shaped patches. This parameter should
be optimized in the training stage. No matter how the size of
patches varies, the compactness of such local features does
not change. In another words, the local feature is always a
16 dimensional vector. Additionally, these statistical mea-
sures are invariant to translation and rotation.

2.3 Classifier

We choose the SVM classifier in the proposed method. The
SVM classifier finds a hyperplane which separates two-class
data with maximal margin [27]. In order to deal with the
outliers in training samples, a soft-margin constraint term is
usually added into the original cost function of SVM. This
soft-margin term is penalized by a constant C, which is the
parameter of the maximal soft-margin classifier. Addition-
ally, the training samples are usually not linear. In order
to make the classifier to be robust to nonlinear data, kernel
methods are introduced to make it to be a kernelized maxi-
mal soft-margin classifier. An usual choice of kernels is the
Gaussian kernel, which is adopted in the work [10]. Accord-
ing to the recent report [22] in computer vision, some other
kernels are superior to the Gaussian kernel only if sample-
vectors are histograms. In the proposed method, the his-
tograms of VOIs are treated as discriminative features for
the classifier training, so we try both the Gaussian kernel
and the kernels recommended by the work [22]. The kernel
definitions are given by Eq. (3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(h,h′) = exp(−γ‖h − h′‖2)

K1(h,h′) =
∑M

i=1 min(hi, h′i)
K2(h,h′) =

∑M
i=1

√
hih′i

K3(h,h′) = exp(−α∑M
i=1

(hi−h′i )
2

hi+h′i
)

(3)

where h = [h1, . . . , hM]T is the histogram with M-bins.
G(h,h′) is the Gaussian kernel, K1(h,h′) is the histogram
intersection kernel, K2(h,h′) is the Bhattacharyya kernel,
K3(h,h′) is the χ2-kernel. γ is the parameter for the gaus-
sian kernel and α is the parameter for the χ2-kernel.

The original SVM classifier is designed for the two
classes classification problems. Here, we choose one-
against-one approach [28] to make it to be used for the
multi-classes classification problems. For the training data
from the i-th and the j-th classes, we first resolve the two-
classes classification problem. Then a voting strategy is
used to assign the data to the class which gets the maximal
votes. The details can be referred to the work [21].

It can be seen that our SVM classifier includes three
kinds of parameters, which are the soft-margin penalty C,
the types of kernels, and the parameters related to kernels.
These parameters should be optimized in the training stage.

3. Four Baseline Methods

The propose method is compared with four kinds of baseline
methods, which are called CTV-2D, CTV-3D, CanSigEMD
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and SpeDesFea in this paper.
CTV-2D is the method proposed in [10]. Although it

is originally not applied for the recognition of general DLD
textures, since it is also a bag-of-features based method we
compare it with the proposed method. The major differ-
ences between the two methods rely in the following three
aspects. First, 2D ROIs are used in CTV-2D, so patches
are 2D squares. Second, local features are a vector whose
components are CT values of all pixels in 2D square-shaped
patches. Third, only the Gaussian kernel is considered for
the SVM classifier based on the original work. Since CT
values and 2D ROIs are considered in this method, we call
it CTV-2D.

CTV-3D is an improved version for CTV-2D. It is
a bag-of-feature based method, either. We improve this
method in the following two aspects. First, 3D VOIs are
adopted in stead of 2D ROIs, so patches are 3D cubic vol-
umes, the same as the proposed method. The other improve-
ment is about the SVM classifier. We try all the four kinds of
kernels shown by Eq. (3). Intensities of all voxels inside 3D
patches are arranged as a vector as the local feature for CTV-
3D, so its local feature is actually the same as the CTV-2D
method. We call this improved version as CTV-3D, since
3D VOIs are used and only CT values are considered for
local features.

CanSigEMD is a signature-matching based method im-
plemented according to the work [16], which is a state-of-
the-art recognition method on DLD textural patterns. From
the aspect that k-means is operated on local features to cal-
culate clusters’ centers and local features are assigned into
each cluster center to calculate histograms as discrimina-
tive features, CanSigEMD is somewhat similar as the bag-
of-features based methods, however they are very different
in methodology. The major difference is that a signature-
matching based method requires to do clustering on each
VOI (sample) in every time to obtain different clusters’ cen-
ters; however, the bag-of-features based methods only do
k-means once in the training stage to get the same clusters’
centers. In another words, the clustering in CanSigEMD is
adaptive to each VOI, and it should be performed in both
of training and testing stage for each VOI. Therefore, both
of histograms and clusters’ centers should be considered
in classification for CanSigEMD. The combination of his-
tograms and clusters’ centers is called a signature. Accord-
ing to [16], signatures are fed into a nearest neighbor (NN)
classifier in CanSigEMD. Earth mover’s distance (EMD) is
considered to measure the distance of two signatures [26].
In order to save computing cost of comparing the signature
of a test VOI against all signatures of training VOIs, signa-
tures of the same class are re-clustered by k-means to gener-
ate one canonical signature for this class in [16]. Therefore
only the canonical signature of each class should be com-
pared to the signature of a test VOI in the NN classifier. In
CanSigEMD, intensities of each voxel in a VOI is treated as
the 1-dimensional local features. Since it uses canonical sig-
natures and EMD for classification, we call it CanSigEMD
in this paper.

SpeDesFea is a well-known method for DLD texture
classification, originally proposed in [5]. According to our
knowledge, this work is successfully applied to classify the
most number of categories (7 categories) for DLD textures
in current literatures. Additionally, this work inspires us to
start our research in DLD textural classification. Based on
these two reasons, we treat it as the state-of-the-art work and
compare it with the proposed method. Although there are
some other works which can be seen as the state-of-the-art
methods, such as the work in [12]. Since irregular-shaped
2D ROIs are adopted in [12], we can not directly compare it
with the proposed work. SpeDesFea operates on 2D ROIs.
It adopts six kinds of specially designed features, three of
which are related to the gray values and the others are re-
lated to geometric patterns. The gray values measures are
the mean and the standard deviation of CT values, and also
the fraction of the area with density components. The geo-
metric measures are the mean of CT values for the extracted
nodular, line and multilocular components. In the original
method, an three-layered artificial neural networks (ANN)
with a back-propagation algorithm is adopted as the clas-
sifier. Here, we use the SVM classifier instead of ANN.
Since both SVM and ANN are mature techniques of clas-
sifier, this change will not essentially affect results of the
original work. We can only use the Gaussian kernel for the
SVM classifier because the six-measure-features are not his-
tograms. Since it uses specially designed features, we call it
SepDesFea in this paper.

4. Experiments

4.1 Data

We collect 117 scans from 117 different subjects from Toku-
shima University Hospital, Tokushima, Japan. All scans
are acquired from 16-row multi-slice CT (Aquilion, Toshiba
Co.) based on non-edge-enhanced kernel. A tube voltage of
120 kVp and current of 250 mAs are used. The image data
are reconstructed to 512×512 matrices. Slice thickness is
1 mm, and the in-plane resolution is about 0.6 mm, with dif-
ferences depended on patients’ sizes. In the 117 scans, there
are 6 scans with normal tissues in lungs and 111 scans with
pulmonary disorders. The use of the data in this study has
been approved by the local ethics committee.

The regions of the six types of patterns are marked
by three experienced radiologists according to the following
procedure. First, one radiologist is asked to review all of the
scans. From each scan, the maximum of three axial slices
with typical textural patterns are selected from the top, mid-
dle and bottom parts of lungs. In order to avoid the confu-
sion of multi-textures existence on the same slice, this radi-
ologist only can select the slice where one kind of textural
patterns dominantly exists and also should indicate what the
pattern is. Then the rest two radiologists are asked to review
the results of the first radiologist, and only the agreed slices
are saved for the next process. Second, the three radiologists
are asked to separately mark the regions where the identified
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Fig. 3 The regions with typical textures agreed by three experienced ra-
diologists and examples of the cental-axial slices of 3D-VOIs with the size
of 32 × 32 × 32. The regions agreed by three experienced radiologists are
marked by white contours. The central-axial slices of 3D-VOIs are marked
by black boxes. We accepted VOIs including regions outside the white
contours and lungs in order to increase more variations to develop a robust
recognition method. The six kinds of textures are consolidation (CON),
ground-glass opacity (GGO), honeycombing (HCM), nodular (NOD), em-
physema (EMP), and normal tissue (NOR).

textures are located by using a drawing tool on the selected
slices. Finally, the regions commonly agreed by the three ra-
diologists are extracted as where the six kinds of textures are
located. These regions are saved as slice-masks where non-
zero intensities of the voxels indicate the textures’ types.

The VOIs used in experiments are generated from the
slice-masks. 32 × 32 grids are overlaid on them and square-
shaped patches whose centers cover non-zero pixels are se-
lected. The selected patches are treated as the central-axial
slices of 32 × 32 × 32 VOIs. Figure 3 gives examples to
show the regions agreed by the three radiologists and the
generated VOIs. It can be seen that we accept VOIs includ-
ing regions outside the white contours (regions agreed by
the three radiologists). Even there are VOIs including re-
gions outside lungs. This is because that we hope to collect
VOIs with variation as much as possible in order to develop
a robust algorithm to recognize pulmonary textures. Finally,
we obtain 3009 3D VOIs for the six kinds of textures.

4.2 Experimental Setting and Tuning Parameters

In this paper, the experimental setting is totally different
from our preliminary work [17]. The differences rely on
both of the complete separation of training and testing data
sets and the ways of tuning parameters. In the new exper-
imental setting, the 3009 VOIs are separated into two sets
by splitting each kind of texture nearly in half. One set
is treated as the training data set, which is firstly used for
tuning parameters of each method and then training each
method by the optimized parameters. The other set is treated
as the testing data set to evaluate their performances. Table 1
gives the numbers of VOIs of each type of textures for the
training and testing data sets. It should be noticed that VOIs
in the two sets belong to different subjects which means
there are no crossing-subjects in the two sets. In param-
eters’ optimization, 20-fold cross-validation (CV) tests are
used. We randomly divide training samples into 20 groups,
each of which has similar relative ratios on samples of each

Table 1 Numbers of 3D-VOIs for the six types of textures in the training
and testing set. There are no cross-subjects VOIs in the two sets. The six
kinds of textures are consolidation (CON), ground-glass opacity (GGO),
honeycombing (HCM), nodular (NOD), emphysema (EMP), and normal
tissue (NOR).

Training Set Testing Set
CON 63 61
GGO 260 251
HCM 272 254
EMP 354 383
NOD 181 179
NOR 384 367
Total 1514 1495

class. In the preliminary work [17], we optimized parame-
ters by a fix-one-then-turning-one method, which meant that
we only adjust one parameter in each time while setting the
others to be fixed values. For example, we initially adjust
the first parameter by setting the others to be any certain
values; when we fix the optimal value of the first parameter
we use it and adjust the second one. This process is oper-
ated in turns until all parameters are optimized. However,
this fix-one-then-tuning-one method can not test all combi-
nation of the parameters and it could miss the optimal values
of parameters. Therefore, we give up this method and try
the combinations of all possible values of parameters in the
20-fold CV tests to adjust parameters for each method. The
combination which gives the best overall recognition rate is
chosen as the optimized parameters. By using the optimized
parameters, the training set data is used again to train each
method and then each method is evaluated on the testing
data set.

We change the experimental setting according to the
following two aspects. First, the completely separation of
VOIs into two sets will make the training and testing sets to-
tally blind with each other. This is more similar as practical
applications, so the evaluation of the performances for each
method is more reasonable. Second, since we try all combi-
nation of possible values of parameters for each method, it
is able to make each method to achieve its best performance.

Two kinds of baseline methods, CTV-2D and SepDes-
Fea, require 2D ROIs. In order to make the generated 3D
VOIs to be used for them, the central slices in the axial
direction are chosen as the 2D ROIs to evaluate these two
methods.

The details of the training for each method are de-
scribed as follows. For CTV-3D and the proposed meth-
ods, the parameters are the same, including size of cubic-
patches, the clusters’ number and the parameters related to
SVM classifier. Here, the possible values for the size of
cubic-patches are from 2 × 2 × 2 to 8 × 8 × 8 with a step of
1× 1× 1, and possible cluster’s numbers are from 50 to 400
with a step of 50. For SVM classifiers, we adjust parameters
related to kernels and soft-margin constant. We set possi-
ble values for the soft-margin constant to be 20, 21, . . . , 210.
Only the gaussian kernel and the χ2-kernel have parame-
ters, which are γ and α. We set their possible values to
be 2−10, 2−9, . . . , 21. Parameters of CTV-2D is similar to
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Table 2 Optimized parameters for each method. CTV-2D is the method
proposed in [10]. CTV-3D is an improved version of CTV-2D. Can-
SigEMD is the method proposed in [16], and SpeDesFea is implemented
according to [5].

Methods Optimized Parameters

CTV-2D
squared-patch size = 3 × 3, clusters’ number = 350,

SVM: Gaussian-kernel, λ = 0.031,C = 2.0

CTV-3D

cubic-patch size = 4 × 4 × 4, clusters’ number = 350,

SVM: χ2-kernel, α = 2.0,C = 4.0
CanSigEMD clusters’ number = 20
SpeDesFea SVM: Gaussian-kernel, λ = 0.125,C = 1024

Proposed Method

cubic-patch size = 3 × 3 × 3, clusters’ number = 200,

SVM: χ2-kernel, α = 0.5,C = 4.0

CTV-3D and the proposed method. The differences are that
squared-patch sizes are from 2×2 to 8×8 and the Gaussian-
kernel is only used for SVM classifier. It should be no-
ticed that there are two kinds of training in the three bag-
of-features based methods, k-means clustering and training
of SVM classifiers. Since k-means training takes too much
time in the whole 20-fold CV tests, we only train it once by
random selecting 50 VOIs for each class before 20-fold CV
tests start. According to our experiences, this way can not
change results much. CanSigEMD has only one parameter,
the clusters’ number. According to the work [16], the value
should be not too large, so we adjust it from 5 to 50 with a
step of 5. For SpeDesFea, we adjust the parameters related
to the Gaussian-kernel based SVM classifier. Possible val-
ues of γ and the soft-margin constant are set to be the same
as the proposed method. The optimized parameters for each
method are listed by Table 2.

4.3 Results

Using the optimized parameters, shown by Table 2, we eval-
uate the performance of each method on the testing data
set. We compare the proposed method with the four base-
line methods by using three kinds of measures, which are
the overall accuracy ( number of corrected classifications

total number ), precision

( true positive
true positive + false positive ) and sensitivity ( true positive

true positive + false negative ).
The confusion tables, precisions and sensitivities for the five
methods are given by Table 3. The comparison of overall ac-
curacy is given by Table 4(a). Additionally, we do the Mc-
Nemar’s tests to compare the statistical differences between
the proposed method and the four kinds of baseline meth-
ods. The p values for the four baseline methods against the
proposed method are given by Table 4(b). All of the p values
are less than 0.0001, which means the statistical differences
are significantly high.

4.4 Discussion

According to these results, it can be seen that the perfor-
mance of the proposed method is better than the four base-
line methods. CTV-3D is the baseline method which is clos-
est to the performances of our method. Additionally, it is the
most similar to our method in methodology, either, only with
the difference on local features. Local features of the pro-

posed method make use of information of both CT values
and shapes; however, CTV-3D only consider the informa-
tion of CT values. This makes the proposed method more
powerful to classify the six kinds of textures. According to
the Table 3(b) and the Table 3(e), it can be seen that CTV-
3D is good at classifying textures of CON, GGO, HCM and
EMP; however it can not differentiate NOD and NOR very
well. NOD is featured by tiny and spread focal-opacities,
dominated by shape information. CT values is not discrim-
inative enough to distinguish NOD from NOR. Since we
consider both of the information of CT values and shapes,
the proposed method is able to distinguish the two kinds of
textures better.

CTV-2D also achieves relatively better results in the
four base-line methods. Although its performance on CON
is similar to CTV-3D and the proposed method, the perfor-
mances on the other five textures are worse. CTV-2D is dif-
ferent from the proposed method in three aspects, which are
2D-ROIs, CT values based local features and Gaussian ker-
nel based SVM classifier. The information only on CT val-
ues and the 2D-ROIs make CTV-2D can not obtain enough
powers to distinguish the DLD patterns. Additionally, only
the Gaussian-kernel based SVM classifier leads to a little
worse performance, either. According to our experiences,
other kernels, especially the χ2-kernel, sometimes can in-
crease 1-2% on the recognition rate.

Unfortunately, CanSigEMD gives the worst results in
the four baseline methods. We consider there may be three
reasons. First, the six kinds of texture classification prob-
lem is more difficult than the problem in the work [16],
where only five kinds of textures are considered. Especially,
the addition of the texture NOD makes the problem much
harder, since it is very easy to be confused with EMP and
NOR. Second, as we mentioned in several times, it can be
difficult to get discriminative features by only considering
the information of CT values. This can be demonstrated by
the confusion table of this method given by Table 3(c). It can
be seen that some textures featured by CT values (i.e. CON
and EMP) achieve relatively better results. The third rea-
son is that the nearest neighbor classifier is relative naive to
handle this difficult problem compared with the SVM clas-
sifier. Additionally, CanSigEMD needs to do clustering on
each ROI on both of the training and testing stages, how-
ever, the clustering is only carried on the training stage in
our method. Therefore, our method is more efficient than
CanSigEMD in practice.

SpeDesFea is implemented according to the state-of-
the-art work [5], which is reported that 7 kinds of DLD tex-
tures are recognized well. However, it does not give satis-
fied results in our evaluation. In the aspect of methodology,
it is quite different from our method. Although we use a
SVM classifier to replace the ANN classifier suggested by
the original work [5], this should not change performances
much since both of them are mature techniques. We con-
sider that the following two reasons may explain why it per-
forms worse in our experiments. The first one is related
to features. In SepDesFea, six kinds of compact measures
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Table 3 Comparison on confusion tables, precisions and sensitivities for the proposed method and
the four baseline methods. CTV-2D is the method proposed in [10]. CTV-3D is an improved version
of CTV-2D. CanSigEMD is the method proposed in [16], and SpeDesFea is implemented according
to [5]. The six kinds of textures are consolidation (CON), ground-glass opacity (GGO), honeycombing
(HCM), nodular (NOD), emphysema (EMP), and normal tissue (NOR).

(a) Confusion table of CTV-2D

Estimated Labels
True Labels CON GGO HCM EMP NOD NOR Sensitivity

CON 58 0 3 0 0 0 95.08%
GGO 1 214 9 0 5 22 85.26%
HCM 0 0 244 10 0 0 96.06%
EMP 0 2 5 343 27 6 89.56%
NOD 0 3 1 19 141 15 78.77%
NOR 0 0 0 15 49 303 82.56%

Precision 98.31% 97.72% 93.13% 88.63% 63.51% 87.57%

(b) Confusion table of CTV-3D

Estimated Labels
True Labels CON GGO HCM EMP NOD NOR Sensitivity

CON 58 1 2 0 0 0 95.08%
GGO 2 236 2 1 3 7 94.02%
HCM 0 0 251 3 0 0 98.82%
EMP 0 11 2 357 8 5 93.21%
NOD 0 6 0 31 132 10 73.74%
NOR 0 3 0 5 47 312 85.01%

Precision 96.67% 91.83% 97.67% 89.92% 69.47% 93.41%

(c) Confusion table of CanSigEMD

Estimated Labels
True Labels CON GGO HCM EMP NOD NOR Sensitivity

CON 56 0 5 0 0 0 91.80%
GGO 10 137 43 0 59 2 54.58%
HCM 22 39 145 10 38 0 57.09%
EMP 0 0 20 307 31 25 80.16%
NOD 0 1 5 28 87 58 48.60%
NOR 0 0 18 132 51 166 45.23%

Precision 63.64% 77.40% 61.44% 64.36% 32.71% 66.14%

(d) Confusion table of SpeDesFea

Estimated Labels
True Labels CON GGO HCM EMP NOD NOR Sensitivity

CON 58 2 1 0 0 0 95.08%
GGO 1 211 7 1 6 25 84.06%
HCM 2 7 207 24 8 6 81.50%
EMP 0 7 5 326 21 24 85.12%
NOD 0 7 12 35 98 27 54.75%
NOR 0 15 8 38 34 272 74.11%

Precision 95.08% 84.73% 86.25% 76.89% 58.68% 76.84%

(e) Confusion table of the proposed method

Estimated Labels
True Labels CON GGO HCM EMP NOD NOR Sensitivity

CON 58 3 0 0 0 0 95.08%
GGO 2 236 4 0 4 5 94.02%
HCM 0 0 252 2 0 0 99.21%
EMP 0 8 2 360 7 6 93.99%
NOD 0 5 0 11 154 9 86.03%
NOR 0 3 0 7 24 333 90.74%

Precision 96.67% 92.55% 97.67% 94.74% 81.48% 94.33%

Table 4 Comparison on recognition accuracy and statistical differences
for the proposed method and the four baseline methods. CTV-2D is the
method proposed in [10]. CTV-3D is an improved version of CTV-2D.
CanSigEMD is the method proposed in [16], and SpeDesFea is imple-
mented according to [5].

(a) Recognition accuracy

Methods Accuracy
CTV-2D 87.15%
CTV-3D 90.03%

CanSigEMD 60.07%
SpeDesFea 78.39%
Proposed 93.18%

(b) Statistical differences by McNemar’s
tests

Methods P Values
Proposed vs. CTV-2D < 0.0001
Proposed vs. CTV-3D < 0.0001

Proposed vs. CanSigEMD < 0.0001
Proposed vs. SpeDesFea < 0.0001

are calculated as features, which are three measures on CT
values and and three measures on geometrical information.
According to the work [5], the CT values based measures

can be straightly calculated; while the geometrical measures
should be calculated on extracted nodular, line and multi-
locular components. The extraction of these components is
not a trivial work. Not only the image noise but also the
complex opacities can lead the extraction results unreason-
able. The extraction based method may be work well on
images with mild DLD textures, however, we doubt its per-
formances on images with severe diffuse lung diseases. In
our method, the local features are calculated directly from
the original images. Since it does not depend on any pre-
extracting results, it is more robust for the recognition of
DLD patterns. The second reason is related to VOIs. A
condition that the processed textures should take more than
70% area of 2D-ROIs is considered in the work [5]. In our
work, we consider to choose a VOIs’ central slice whose
center should be covered by the processed textures because
we hope to add more variations in the training and testing
in order to develop a robust method. Therefore, the ROIs
considered in this work are much harder.

Experimental results show that the proposed method
performs best. The reason relies on the successfully appli-
cation of the bag-of-features framework on this DLD textu-
ral classification problem. The power of the bag-of-features
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Fig. 4 Some examples of VOIs misclassified among NOD, EMP and
NOR. (a). An example of NOD is misclassified to be EMP. (b). An
example of NOD is misclassified to be NOR. (c). An example of EMP is
misclassified to be NOD. (d). An example of NOR is misclassified to be
NOD.

method is that it interprets a VOI of DLD textures by a his-
togram whose bins are the clusters of a set of local features.
This new way has a underlying statistical advantage to in-
terpret a VOI, so it is more robust than conventional meth-
ods which directly calculate a feature vector on a VOI. The
superior characteristics of the bag-of-feature method is the
first aspect to ensure the proposed method works best. Sec-
ond, the proposed local features and adjustment of parame-
ters related to the SVM classifier make the bag-of-features
method achieve the best performances. Since the proposed
local features make use of CT values and shapes information
both of which are the typical characters of DLD textures,
they are able to give more discriminative histogram to fa-
cilitate the classification. The adjustment of different types
of kernels and the soft-margin penalty constant can make the
SVM classifier to achieve its best power. Therefore, the pro-
posed method is superior to the other four kinds of methods
in experiments.

The sensitivity and precision are beyond 90% for the
textures of CON, GGO, HCM, EMP and NOR by using the
proposed method. However, the performance on NOD is rel-
atively worse. Especially, the misclassification are mainly
among NOD, EMP and NOR in the proposed method. Fig-
ure 4 gives some examples of VOIs on this kind of misclas-
sification. Figure 4 (a) and Fig. 4 (b) are examples of NOD
misclassified to be EMP and NOR respectively. It can be
seen that both of them are not typical VOIs of NOD. A typi-
cal VOI of NOD has the character of spreading tiny nodular
opacities, shown by Fig. 3. Since an large emphysema-like
region exists in the right-bottom part of Fig. 4 (a), this could
be why it is misclassified to be EMP. For the VOI shown
by Fig. 4 (b), since there are only few nodular opacities, it
is misclassified to be NOR. Although we use a strict pro-
tocol to generate typical VOIs of different textures only in
regions agreed by three experienced radiologists, because
there are lots of variations in DLD textures it could be dif-
ficult to judge where the typical textures exist sometimes,
especially for the most difficult texture of NOD. Therefore,
a post-check of generated VOIs by radiologists may be re-
quired in future research to ensure that all generated VOIs
are typical ones. Figure 4 (c) and Fig. 4 (d) are the examples
of EMP and NOR which are misclassified to be NOD re-
spectively. It can be seen that the crossing-points of vessels
can be viewed clearly on these two cases. This could be the
reason why they are misclassified to be NOD, so the elim-

ination of vessels inside lungs could be required in future
research.

Finally, it should be noticed that overall recognition
rate reported in this paper is a little lower than what we
reported in the preliminary work [17] because the new ex-
perimental setting makes the training and testing set totally
blind with each other. However, this can not change the
conclusion that the proposed method achieves good results
in the recognition of the six kinds of textures.

5. Conclusion

We proposed a bag-of-features approach to automatically
classify six kinds of typical pulmonary textures on HRCT
for DLD. Some textures, such as CON, NOR and EMP,
are mainly characterized by CT values; while for other
patterns, such as NOD and HCM, are mainly featured
by shape information. Considering the two characters,
we proposed a new kind of local features for our bag-
of-features approach. The features were mainly based on
four kinds of statistical measures, which were mean, stan-
dard deviation, skewness and kurtosis. Because they were
calculated from both the original CT values and eigen-
values of Hessian matrices, they were able to combine
both of the information on CT values and shapes. There-
fore, the new local features were discriminative to dis-
tinguish the six kinds of patterns. The proposed method
was trained (1514 ROIs) and tested (1495 ROIs) on two
completely-separated data sets. The experiments showed
that the overall recognition accuracy for the proposed
method was 93.18%. The values of precision/sensitivity for
each texture were 96.67%/95.08% (CON), 92.55%/94.02%
(GGO), 97.67%/99.21% (HCM), 94.74%/93.99% (EMP),
81.48%/86.03%(NOD) and 94.33%/90.74% (NOR). We
also implemented four kinds of baseline methods, includ-
ing two implemented version of the state-of-the-art meth-
ods [5], [16], in order to compare with the proposed method.
According to experimental results, our method was supe-
rior to the four methods. Additionally, the McNemar’s tests
showed the proposed method was statistically different from
the four baseline methods, either. Therefore, we concluded
that the proposed method achieved good results for the clas-
sification of the six kinds of textures and this technique
would be useful for a CAD system on diffuse lung diseases.

Although this method performed well, we noticed that
the misclassification were mainly among NOD, EMP and
NOR. We will try to resolve this problem in our future work.
A post-check on VOIs for typical textures, a pre-processing
to eliminate vessels and the adoption of more powerful lo-
cal features (i.e. SIFT [23]) would be good ideas to resolve
this problem. Additionally, reticular with GGO is a typical
textures of DLD, either. Since we only collect fewer cases
for this texture, we does not consider it in this paper. We
will collect more data, and consider the texture of reticular
with GGO in future. Finally, using irregular-shaped VOIs
(or ROIs), such as what is suggested in [12], would be con-
sidered in our future research.
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