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SUMMARY The number of networked devices of sensors and actua-
tors continues to increase. We are developing a data-sharing mechanism
called uTupleSpace as middleware for storing and retrieving ubiquitous
data that are input or output by such devices. uTupleSpace enables flex-
ible retrieval of sensor data and flexible control of actuator devices, and it
simplifies the development of various applications. Though uTupleSpace
requires scalability against increasing amounts of ubiquitous data, tradi-
tional load-distribution methods using a distributed hash table (DHT) are
unsuitable for our case because of the ununiformity of the data. Data are
nonuniformly generated at some particular times, in some particular posi-
tions, and by some particular devices, and their hash values focus on some
particular values. This feature makes it difficult for the traditional methods
to sufficiently distribute the load by using the hash values. Therefore, we
propose a new load-distribution method using a DHT called the dynamic-
help method. The proposed method enables one or more peers to handle
loads related to the same hash value redundantly. This makes it possible
to handle the large load related to one hash value by distributing the load
among peers. Moreover, the proposed method reduces the load caused by
dynamic load-redistribution. Evaluation experiments showed that the pro-
posed method achieved sufficient load-distribution even when the load was
concentrated on one hash value with low overhead. We also confirmed that
the proposed method enabled uTupleSpace to accommodate the increasing
load with simple operational rules stably and with economic efficiency.
key words: tuple space, load distribution, DHT

1. Introduction

The number of various networked sensor devices such as
temperature sensors, rain gauges, and GPS devices has been
rising recently. To make the best use of sensor data acquired
by the devices, we should ensure that data are shared among
applications. Sharing data increases the type and amount of
data that an application can use and enables the application
to recognize events in the real world more multilaterally and
minutely. This facilitates the development of new applica-
tions. Share data of networked actuator devices among ap-
plications enables the application to control systems in the
real world more freely and also encourages the development
of various applications. For this purpose, we are working on
the data-sharing mechanism called uTupleSpace for ubiqui-
tous data [1]. Ubiquitous data include sensor data and actu-
ator device data. As the types and amounts of shared data
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increase, the more value such data stores will gain. As this
happens, it will be important to achieve scalability of uTu-
pleSpace.

Meanwhile, distributed hash tables (DHTs) function as
scalable data stores. A DHT is a system for managing a
large hash table by a number of peers in a decentralized way.
They are being studied intensively as a representative scale-
out technology. DHTs are thought to have strong potential
to realize scalability of uTupleSpace.

However, to the best of our knowledge, traditional
DHTs cannot distribute load adequately among peers. Each
peer controls a section in the whole hash space and is bur-
dened with the load caused by data whose hash value is
within that section. The DHTs initially decide which peer
will manage which section. Then, most of the methods of
traditional DHTs involve adjusting the size of the section
according to the load on the section dynamically. However,
such methods cannot handle loads that are concentrated on
particular hash values. Even if the methods reduce the size
of the section to only one hash value, the load on the hash
value could not be accommodated by the peer. Moreover,
when the amount of accumulated data on each hash value
gets too large, the load of migration processes caused by
relegation of hash subspaces among peers will also become
large.

DHTs distribute data according to the value of a distri-
bution key, and therefore, the load distribution depends on
the distribution key. Each datum contains one or more key-
value pairs; the distribution key is one of the keys that is
contained by each datum. Because the value of the distri-
bution key is used as an argument of a hash function, this
value needs to be specified in all data insertion processes
and all search processes. Therefore, when we design the
uTupleSpace with a DHT, we have to choose the key that
will be used as a distribution key, and that will be contained
by the sensor data and used by applications in search condi-
tions naturally. For example, the sensing time and the type
of sensor can potentially be keys. However, because there
may be a large amount of sensor data that have the same
sensing time or are from the same type of sensor, the prob-
lem of load concentration can occur. By using a distribution
key made of two or more keys, the amount of data related
to one hash value is reduced, and the problem will be allevi-
ated to some degree. However, the problem cannot be solved
perfectly, and it will reduce the usability because the num-
ber of keys that must be specified in the insertion and search
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process increases. With the traditional DHTs, it would be
assumed that the amount of data related to one hash value
is not very large. However, that cannot be assumed in our
situation.

Therefore, we propose in this paper a new load-
distribution method for uTupleSpace. The load related to
one hash value can be handled by one or more peers in the
proposed method. This makes it possible to handle the large
load related to one hash value by distributing the load among
the peers. Moreover, the proposed method reduces the load
of migration processes. This prevents insertion and search
processes from stacking up because of the migration process
load. We evaluated the performance of the proposed method
by using a micro-benchmark and confirmed that it achieves
adequate load-distribution with low overhead. We also eval-
uated the feasibility of the proposed method through simu-
lation and confirmed that the proposed method enables uTu-
pleSpace to accommodate the increasing load with simple
operational rules stably and cost-effectively.

In this paper, the following points are newly added to
our previous work [2]. (1) We introduce an simple Com-
mandActual server (sCA server) in order to distribute the
load of the application that mainly uses actuators. (2) The
performance of the proposed method with the sCA server is
revaluated. (3) We evaluated the feasibility of the proposed
method by conducting an operational simulation.

The rest of the paper is organized as follows. Related
studies are described, and the differences between them and
the proposed method are discussed in Sect. 2. The proposed
method is explained in Sect. 3. The communication model
of uTupleSpace is explained first, then the uTupleSpace sys-
tem using the proposed method is explained. The evaluation
of the proposed method is presented in Sect. 4, and we con-
clude the paper in Sect. 5.

2. Related Work

uTupleSpace is based on the tuple space [3], a communica-
tion model used in parallel computing. Many studies have
been conducted to investigate the scalability of tuple space.

TinyLIME [4] and TeenyLIME [5] organize ad-hoc tu-
ple spaces over available terminals using the connectivity of
the local wireless network. W4TupleSpace [6] converts data
into a uniform tuple format called W4 (Who, What, Where
and When), and stores it into a tuple space divided region-
ally or by topic. Agimone [7] integrates two systems, Ag-
illa [8] for wireless sensor networks (WSNs) and Limone [9]
for an IP network. Agimone organizes a tuple space for each
WSN and enables communication only among prearranged
tuple spaces. These methods prevent a tuple space from be-
coming too large by dividing it into pre-defined units like
geometric areas or connectivities and make it possible to
accommodate a large volume of data and communications.
However, it is difficult to pre-define the unit for dividing a
tuple space when the sensor data are shared by various appli-
cations because the range of needed sensor data depends on
the applications. Division by a pre-defined unit would un-

dermine the flexibility and restrict application development.
De at al. [12] tried to achieve scalability by speeding up

the matching processes instead of dividing the tuple space.
However, it is hard to say whether the method secures suf-
ficient scalability because the search time is proportional to
the number of tuples.

DTuples [10] and BISSA [11] make each tuple contain
a subject key or message key and use a DHT to construct
a huge tuple space by using the key as a distribution key.
The load-distribution methods of these systems depend on
the DHT used in the systems.

On the other hand, the load-distribution in DHTs has
also been studied intensively. Chord [13] introduces the
notion of virtual servers to cope with the heterogeneity of
peers. Peers participating in a DHT can host different num-
bers of virtual servers, thus taking advantage of peer hetero-
geneity. Most of the studies of load-distribution in DHTs
focus on how the virtual servers are managed [14]–[16].

A. Rao et al. [14] proposed a method of reallocating
virtual servers hosted by an overloaded peer to a lightly
loaded peer. Because the migration process for reallocation
of virtual servers is computationally expensive, the techni-
cal problem is how to reduce the cost without unbalancing
the load. To solve the problem, S. Surana et al. [15] and
C. Chen et al. [16] introduced centralized load balancing
algorithms, where dedicated servers manage the migration
of virtual servers among the peers. Furthermore, L. Yang
et al. [17] proposed a method of dividing virtual servers if a
peer becomes overloaded even when the peer hosts only one
virtual server.

However, these traditional methods cannot handle the
case when the load related to only one hash value causes the
peer to be overloaded. This is because the data related to
one hash value are hosted by only one peer in these meth-
ods. In the case of uTupleSpace in particular, as previously
described, this is a major problem because the amount of
data related to one hash value tends to be large. On the other
hand, the proposed method permits peers to host data redun-
dantly and makes it possible to handle cases where the data
related to one hash value become too concentrated, as in a
hotspot.

Because these methods adopt centralized algorithms
and introduce a dedicated server for load-distribution, the
server can be a performance bottleneck and the single point
of failure. Therefore, Hsiao [18] proposed a decentral-
ized algorithm for load-distribution. Although the proposed
method uses a dedicated server, it would be possible to adopt
a decentralized algorithm and remove the dedicated server.

3. uTupleSpace with Dynamic-Help Method

In this section, we describe our proposed dynamic-help
method, which balances the load dynamically and makes
uTupleSpace scalable. This method balances the load
among servers existing in the uTupleSpace as much as pos-
sible and requests the system operator to add a new server to
the uTupleSpace only if the load increases and reaches the
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Table 1 Data format of uTuple.

Address Identifier of sensor/actuator
Time Time when data were stored by sensor/actuator

Metadata Position Position (latitude and longitude)
of sensor/actuator

Subject Type of sensor/actuator
Type Type of data

Data (user-defined)

capacity of all the existing servers. This approach effectively
utilizes existing resources and keeps equipment investment
at a minimum.

The load can be classified as a processing load or mem-
ory load. The former includes CPU load and I/O load. The
latter refers to the amount of data accumulated on a hard
disk or to hard drive utilization. In the following section, we
describe the details of the uTupleSpace model and the ba-
sic idea of the proposed method. We also give an overview
of the system and present examples of a dynamic load bal-
ancing process for processing load and memory load. In
addition, we discuss the process for adding a new server.
We also discuss the additional processes for achieving bet-
ter performance in the Appendix.

3.1 uTupleSpace Model

In the uTupleSpace model, we introduce the metadata fields
in a tuple. The new tuple, called uTuple, consists of meta-
data and data. Table 1 lists the uTuple data format. The
metadata contains an address (ID of the device), the time the
data were created, and the position at which the device re-
sides. Value ranges are accepted for these fields. The meta-
data also contains the type of device and data. For these
fields, value ranges are not accepted, and exact matching
must be performed in order to use these fields as a DHT
distribution key.

The uTupleSpace model supports two types of com-
munication; event communication achieves selective read,
while command communication achieves selective write
(Fig. 1). The former is a style original to the tuple space
model; the latter is an extension we proposed. In short,
the metadata of a uTuple pair used in each type is differ-
ent. That is, in the event communication, the writer sets an
exact value, and the reader sets the range condition; in the
command communication, the roles are reversed.

In event communication, the writer (sensor program)
registers the EventActual (EA) uTuple, which consists of the
writer’s own entries in the metadata and data. The reader
(application program) registers the EventFormal (EF) uTu-
ple, which consists of templates in the metadata and data for
matching the desired data and writers. In command commu-
nication, the reader (actuator program) registers the Com-
mandFormal (CF) uTuple, which consists of the reader’s
own entry in the metadata and a template in the data for
matching the desired command data. The writer (applica-
tion program) registers the CommandActual (CA) uTuple,
which consists of an entry in the data and a template in the

Fig. 1 Model of uTupleSpace.

metadata for matching the desired readers. These commu-
nications achieve selective read and write processes with,
for example, a space range or time range. The scope of the
uTuple for read or write is thus flexible.

When a uTuple is registered to uTupleSpace, the uTu-
ple is compared with its counterparts first (matching pro-
cess). If the uTuple is EA, the counterpart is EF; if the uTu-
ple is CA, the counterpart is CF, and vice versa. If the EA
or CA is respectively matched to EF or CF in the matching
process, the EA or CA is forwarded to the reader that reg-
istered the EF or CF. Second, the uTuple is written to the
hard disk and accumulated (perpetuating process). A life-
time can be set for each uTuple, and expired uTuples are
removed via garbage collection, which is executed periodi-
cally. When the uTuple whose lifetime is set as 0 is regis-
tered, the matching process is executed, but the perpetuating
process is skipped.

3.2 Basic Idea of Dynamic-Help Method

When the processing of server A is overloaded, the idle
server B partially takes over the load as follows using the
proposed method. The sensor programs register the EAs,
which should all be registered to server A up to that time,
to either A or B, so as to partially move the load of A to B.
However, the application programs register the EFs, which
should all be registered to A up to that time, to both A and
B. This is because if they register the EFs to either A or B,
they cannot fully communicate with the sensor programs as
the program developer intended.

It is okay for EFs to be registered to one server and
EAs to be registered to both servers in order to achieve com-
munication integrity. However, to achieve efficient load-
distribution, EFs should be registered to both servers, and
EAs to one server. This is because the amount of sensor data
is prone to be enormous, while the number of search queries
is prone to be much fewer in most ubiquitous applications.
That is, the number of EAs registered by sensor programs is
much higher than that of EFs registered by application pro-
grams. This characteristic enables the proposed method to
achieve high load-distribution efficiency and to reduce the
overhead caused by tuple duplications.

Though the proposed method applies similar consider-
ations to CF and CA, they cannot be applied in exactly the
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same way. According to our analysis, the relationship be-
tween the quantities of accumulated EAs and EFs is similar
to the relationship between the frequencies of registration of
EAs and EFs. That is, the number of accumulated EAs� the
number of accumulated EFs, and the registration frequency
of EAs� the registration frequency of EFs. In contrast, CF
and CA have different tendencies; that is, the number of ac-
cumulated CFs� the number of accumulated CAs, and the
registration frequency of CFs � the registration frequency
of CAs. The reason for this is as follows.

First, an actuator device is controlled more than once.
This means that an actuator device accepts two or more CAs.
Also, the number of CFs is proportional to the number of ac-
tuator devices. Therefore, the formula the registration fre-
quency of CFs� the registration frequency of CAs becomes
true. Second, because the control of actuator devices affects
the real world, most applications control only the particular
actuator devices that they have permission to control, and
only at the time that the applications issue the control com-
mand. For this reason, most CAs are registered with the ad-
dress field set to a particular device ID and the lifetime set to
0 (we refer to this simple type of CA as sCA). The perpetuat-
ing process is skipped in the registration of sCA. Therefore,
the formula the number of accumulated CFs� the number
of accumulated CAs becomes true. Because of the charac-
teristics of CF and CA, the simple method in which a CF is
registered to either A or B and a CA is registered to both A
and B, as with the EAs and EFs, causes a problem in that
the large CA load is placed on both A and B.

Therefore, a server that is specialized to process sCA
is newly introduced in the proposed method. This server is
called the sCA server. When a CF is registered, the CF is
duplicated; one is registered to either A or B, as with EA.
The other is registered to the sCA server for matching with
sCA.

When a CA is registered, the CA is first evaluated to
determine whether or not it is an sCA. If the CA is not an
sCA, it is registered to both A and B as with the EF. If the
CA is an sCA, it is registered to the sCA server and com-
pared with the accumulated CFs. At the sCA server, all the
matching process needs to do is to compare the three fields
(subject/type/address) of uTuples and determine whether the
values match each other exactly or not. Moreover, because
the lifetime of an sCA is 0, the perpetuating process can
be skipped. Thus, since only simple processes are executed
on the sCA server, high throughput can be achieved. Even
when the sCA server requires load-distribution, the tradi-
tional load-distribution methods of DHT which concatenate
the three fields and use it as a distribution key would func-
tion well.

When server A’s memory is overloaded, idle server B
partially takes over the load. In this case, no more uTuples
can be registered to A. However, if all uTuples are registered
only to B, communication integrity will be undermined.
Therefore, the application program registers EFs/CAs not
only to B but also to A, and it skips the perpetuating process
in the registration to A by setting the lifetime of the uTuple

as 0. EFs/CAs accumulated to A by that time are copied
to B. This enables EFs/CAs accumulated to A to be prop-
erly compared to newly registered EAs/CFs. Because the
number of accumulated EFs is equal to the number of ap-
plications that search EAs continuously, and the number of
accumulated CAs is equal to the number of CAs that are not
sCAs, the numbers of accumulated EFs/CAs are both rela-
tively small, and the overhead of the migration process for
EFs/CAs is also small.

3.3 System Overview

An overview of a system in which the proposed method
is applied is shown in Fig. 2. The uTupleServer executes
the matching process and accumulates uTuples. The Load
Monitoring Server monitors the load of each uTupleServer
and balances them as necessary. The Assignment Manager
Server manages the assignment table, which indicates which
uTuple should be registered to which uTupleServer. The as-
signment table lists the correspondence between each sec-
tion of divided hash space and the addresses of the uTu-
pleServers in charge of the section. Additionally, an accu-
mulatable flag is added to each address, which will be de-
scribed later. Two or more Assignment Manager Servers
are installed, and they manage the assignment table in a dis-
tributed manner with a DHT. The DHT is formed by the
peers running on the Assignment Manager Servers. The
same number of peers as that of uTupleServers are invoked
using virtual servers.

The DHT is a bit different from usual DHTs though
the basic algorithms such as query routing are the same.
Each peer holds information of the range of the section
which the peer is in charge of in the whole hash space, and
the list of the addresses of the uTupleServers which are in
charge of the section and the accumulatable flags. When
the peer receives a query, it does not return data but returns
the list. When a new uTupleServer is added, a new peer
is also invoked and added to the DHT. The DHT achieves
high throughput because the amount of information held
by each peer is very small, it can be kept on memory, and
the peer can execute query-processing with memory access
only. The sCA server executes the matching process be-
tween sCAs and CFs and accumulates CFs. We assume
that these servers are connected by Ethernet. The proposed
method is achieved with these servers.

Fig. 2 System overview.
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The advantage of the proposed method is that it can
distribute the load caused by uTuples that have the same
distribution key. The proposed method separates the main
load, that is, matching processes and perpetuating processes,
from peers of the DHT, and makes uTupleServers burden the
load in a distributed manner. When the system scale is small
enough, only one Assignment Manager Server is sufficient.
In such a case, the assignment table does not need to be
managed in a distributed manner with DHT.

The client program concatenates the specific values in
a uTuple (the subject key and type key values) and obtains a
distribution key with a hash function applied with the con-
catenated value. It then looks up the distribution key in the
DHT and obtains addresses of uTupleServers to be regis-
tered using the assignment table. Next, it registers the uTu-
ple to the uTupleServers. However, when a CF is registered,
in addition to the registration to the uTupleServer described
above, the client program also registers it to the sCA server.
When an sCA is registered, the client program does not reg-
ister it to uTupleServer but only to the sCA server.

The registration to uTupleServer requires specific val-
ues of the subject key (the type of device) and type key
(the type of data) in the uTuple to determine which uTu-
pleServers to register the item to. An application program
for the ubiquitous environment, however, is always aware of
the values of these keys. This assumption is quite natural,
and there will be no practical restrictions.

3.4 Example of Dynamic Distribution of Processing Load

1. The Load Monitoring Server detects that the processing
load of uTupleServer A exceeds a threshold level Tp.

2. The Load Monitoring Server selects uTupleServer B,
which has the lightest load among the uTupleServers at
that time, as a helper server to share the load of A.

3. The Load Monitoring Server makes A copy the EFs
and CAs that have accumulated in A up to that time, to
B.

4. The Load Monitoring Server makes the Assignment
Manager Servers add the address of B with the accu-
mulatable flag ON to the line including the address of
A in the assignment table. Figure 3 shows how the as-
signment table is updated by this operation. The accu-
mulatable flag set to ON is indicated by 1 in the figure.

5. The reader and writer obtain the addresses of both A
and B from the Assignment Manager Server when they
look up the distribution key related to the section that A
is in charge of. When the application program registers
EF or CA, it registers it to both A and B. When the
device program registers EA or CF, it randomly selects
one from A and B, and registers the EA or the CF to
the selected one.

3.5 Example of Dynamic Distribution of Memory Load

1. The Load Monitoring Server detects that the memory

Fig. 3 Example of updating assignment table by dynamic distribution of
processing load.

Fig. 4 Example of updating assignment table by dynamic distribution of
memory load.

load of uTupleServer A exceeds a threshold level Tm.
2. The Load Monitoring Server selects uTupleServer B,

which has the lightest load among the uTupleServers at
that time, as a helper server to share the load of A.

3. The Load Monitoring Server makes A copy the EFs
and CAs that have accumulated in A up to that time, to
B.

4. The Load Monitoring Server makes the Assignment
Manager Server set the accumulatable flag of A to OFF
and add the address of B with the accumulatable flag
ON to the line including the address of A in the assign-
ment table. Figure 4 shows how the assignment table
is updated by this operation.

5. The reader and writer obtain the address of A with ac-
cumulatable flag OFF and the address of B with ac-
cumulatable flag ON from the Assignment Manager
Server when they look up the distribution key related to
the section managed by A. When the application pro-
gram registers EF or CA, it registers it to A with the
lifetime set as 0 and to B with the original lifetime.
When the device program registers EA or CF, it regis-
ters it to B, whose accumulatable flag is ON.

3.6 Addition of New uTupleServer to uTupleSpace

If the load increases and reaches the capacity of all the ex-
isting uTupleServers, a new uTupleServer must be added to
the uTupleSpace. To add a new uTupleServer, we adopt a
method in which the new uTupleServer partially takes over
a section of hash space from an existing uTupleServer. This
method is similar to that of adding a new peer to a DHT;
however, the existing uTupleServer does not move all the
uTuples, in which the distribution key is included in the sec-
tion taken over by the new uTupleServer, to the new uTu-
pleServer because the cost of doing so is prohibitively high,
especially for EAs/CFs. An example of this method is de-
scribed below.

1. A new uTupleServer, Z, sends an add-server-request to
the Load Monitoring Server.

2. The Load Monitoring Server selects uTupleServer A,
whose load is the heaviest among uTupleServers at that
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Fig. 5 Example of updating assignment table by addition of new uTuple-
Server.

time, and makes the Assignment Manager Server di-
vide the section managed by A. Specifically, uTuple-
Server A randomly selects a uTuple from accumulated
uTuples, and returns the hash value of the uTuple to the
Load Monitoring Server. The Load Monitoring Server
requests the Assignment Manager Server to invoke a
new peer corresponding to Z and to add it to the DHT
with the hash value and addresses of A and Z as param-
eters. The Assignment Manager Server invokes a new
peer and adds it to the DHT. In the addition process, the
peer in charge of the section containing the hash value
divides the section in half, takes charge in one side by
itself, makes the new peer take charge in the other side,
and copies the list of uTupleServer to the new peer.

3. The Load Monitoring Server makes A copy the EFs
and CAs that have accumulated in A up to that time
and that have the distribution key included in one side
of the divided sections, to Z.

4. The Load Monitoring Server makes the Assignment
Manager Server set the accumulatable flag of A to OFF
and add the address of Z with the accumulatable flag
ON to the section. Figure 5 shows how the assignment
table is updated by this operation.

5. The subsequent operation is the same as step 5 of the
dynamic distribution of memory load.

4. Experiments

We evaluated the performance and the feasibility of the pro-
posed method. The results are described below.

4.1 Performance Evaluation

We ran a micro-benchmark on a uTupleServer to evaluate
the performance from the aspects of throughput and memory
capacity. From the micro-benchmark results, we estimated
the overall performance of the whole system under the load
of assumed applications.

Although it is ideal with this method to increase the
performance of uTupleSpace in proportion to the number
of uTupleServers, the performance actually depends on the
load distribution. If the load is uniformly distributed over
hash space, that is, the amounts of data and access related to
each hash value are equal to each other, the load would be
distributed equally among the uTupleServers by the DHT
without dynamic load-balancing, and uTupleSpace would
provide ideal performance (hereinafter called the best con-
dition). If the load is distributed unequally, it would be nec-
essary to copy EFs and CAs, which would cause processing

Fig. 6 Execution time for registering uTuples.

Fig. 7 Memory consumed in accumulating uTuples.

and memory overhead. The worst condition is the condi-
tion where the overhead reaches a maximum level because
the load is concentrated at one hash value. The traditional
methods cannot distribute the load in the worst condition.
Therefore, we evaluated how the throughput and the number
of accumulatable uTuples vary with the number of uTuple-
Servers in the ideal condition and the worst condition.

4.1.1 Results of Micro-Benchmark

The host for the uTupleServer was Xserve (Quad-Core Intel
Xeon 2.8 GHz, 2 GB memory). We registered uTuples of
EA, EF, and CA to the uTupleServer to which the uTuples
of EF, EA, and CF were respectively registered in advance.

Figure 6 plots the variation in execution time for regis-
tration with respect to the number of uTuples registered in
advance. In each registration, one uTuple matched another
uTuple in a matching process. Figure 7 plots the result of
measuring the memory size for accumulating EAs and EFs.
Each EA has a small quantity of data, which are assumed in
applications A and B (described later), in the body field.

4.1.2 Overall Performance Estimation

On the basis of the results of the micro-benchmark test, we
estimated the performance of an entire system consisting of
two or more uTupleServers. We assumed the load of two
typical applications as shown in Table 2. Application A uses
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Table 2 Load of assumed applications.

Application A Application B

E
ve

nt

# of registered EAs 350D 720D
# of registered EFs D/10000 D/10000

EA registration freq. 50D (per day) [1] 12D (per day) [1]
EF registration freq. 0.1 (per sec) [1] 0.1 (per sec) [1]

C
om

m
an

d # of registered CFs 0 D
# of registered CAs 0 0
CF registration freq. 0 1 (per sec) [0]
CA registration freq. 0 12D (per day) [1]
D: # of devices, [•]: # of matched uTuples in each registration

sensor data. Application B mainly uses actuators. Appli-
cation A is an application for improving the efficiency of
physical distribution using sensors that sense the quantity
of a truckload. Although the event communication load for
sensor data accumulation is large, The command communi-
cation load is 0. The loads of applications that mainly mon-
itor things by using sensor devices will have such a load.
Application B is an application for remote management of
information appliances. The event communication load for
status confirmation and the command communication load
for sending control commands are both large. All CAs are
sCAs. The loads of applications that control things by using
sensor and actuator devices will have such loads.

Figure 8 plots the overall throughput (the number of
registered uTuples per second) and the number of accumu-
latable uTuples under these assumed loads. We estimated
these values for the existing and proposed methods under the
best and worst conditions. The existing method is the load-
distribution method of traditional DHTs. It cannot distribute
the load caused by uTuples that have the same distribution
key. The situation in which the distribution keys in uTuples
are spread evenly is the best condition. In this situation, the
load caused by the uTuples is distributed evenly to uTuple-
Servers in both the existing and proposed methods. On the
other hand, the situation in which all distribution keys in
uTuples are the same is the worst condition. In this situa-
tion, the load of the uTuples is concentrated to one uTuple-
Server in the existing method. In the proposed method, all
EFs and CAs are copied to all uTupleServers. This leads to
an increase in memory load caused by EFs and CAs and an
increase in the processing load for the matching processes
in the registration of EAs and CFs. These additional loads
affect the overall throughput and number of accumulatable
uTuples on the uTupleServers. The size of the effect can be
determined from Figs. 6 and 7.

In estimating the overall throughput and the number of
accumulatable uTuples, we assumed that the results shown
in Figs. 6 and 7 are linear, the uTuples of each type consume
processing resources and memory resources independently,
and a mix of uTuple types does not cause a gain or loss of
the amount of consumption. For example, when the registra-
tion of EAs takes 200 msec and the registration of EFs takes
100 msec, we estimate that the registration of the EAs and
EFs takes 300 msec. We also assumed that the memory ca-
pacity is 140 GB per uTupleServer, and that the processing

Fig. 8 Overall performance.

load for copying EFs and CAs and the network delay can be
ignored. As described previously, the DHT running on the
Assignment Manager Servers achieves high throughput be-
cause the peers can execute query-processing with memory
access only. For example, it has been reported that one node
of memcached [19] can process about one hundred thousand
queries per second. The peer on memory would achieve
the equivalent performance. As the sCA server also keeps a
relatively small amount of information and executes simple
processes, which search the hash table, the sCA server is ex-
pected to achieve equivalent performance. In addition, it is
possible to distribute the load with the DHT. Therefore, we
assumed that the Assignment Manager Server and the sCA
server exhibit sufficient good performance not to affect the
performance of the uTupleServers. We also assumed that
the traffic from the Load Monitoring Server is small enough
not to affect the performance of the uTupleServers.

In the proposed method, communication among uTu-
pleServers is not needed in a steady state. In other words,
a uTupleServer is independent of other uTupleServers. The
performance of a uTupleServer does not depend on the per-
formance or the load of other uTupleServers. Therefore,
we were able to estimate the overall throughput and number
of accumulatable uTuples in a steady state from the micro-
benchmark result on a uTupleServer.

4.1.3 Discussion of Estimated Performance

In the best condition, dynamic load-balancing of the pro-
posed method does not occur, and the performance is the
same as that of the existing method. The effect of the pro-
posed method is seen in the worse condition, where the load
is distributed unequally. As can be seen in Fig. 8, under the
load of both applications, the performance of the proposed
method is dramatically improved in the worst condition and
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Fig. 9 Simulation result.

comes close to the performance in the best condition.
Therefore, we can say that the proposed method dis-

tributes both loads of two typical applications with low over-
head even if the load is concentrated on a hash value.

4.2 Feasibility Evaluation

We conducted an operational simulation of uTupleSpace un-
der the load of application A. Although the performance
evaluation showed that the proposed method can distribute
the load of applications A and B with low overhead, that is
not enough to apply the proposed method to a real system
operation. In a real system operation, the system needs to
start off on a small scale in terms of the number of servers,
the load needs to be monitored, and more servers have to be
added as necessary. In the operation, the proposed method
has to enable the operator to balance a small investment in
equipment with stable operation that maintains some mar-
gin of system resource usage. Therefore, to confirm whether
such operation can be achieved with the proposed method,
we conducted the operational simulation. In the simulation,
we assumed the following conditions.

• The number of sensor devices increases by 10,000 each
day, and reaches ten million after about three years.
• A month is needed from the decision to buy a server to

the installation of the server in the system because of
necessary procedures such as the actual purchase and
the configuration.

The operational rules are simple, as indicated below.

• The system starts with ten uTupleServers.
• The operator predicts the load of 60 days later based

on the change in the load in the last week with linear
prediction every day.
• When the resource usage is predicted to exceed 90%

two months later, the operator decides to buy as many
servers as the system needs in order to reduce the re-
source usage to below 70%.

The simulation result is shown in Fig. 9. The graph
shows the time variation of the average resource usage and
the number of uTupleServers in the operational simulation
following the above operational rules. As can be seen in the
figure, the number of uTupleServers increases little by little

and reaches 50 on the 1000th day, by which point the num-
ber of sensor devices has reached ten million. And all during
that time, both the memory resource usage and processing
resource usage fall within the range from 50% to 90%, and
maintain an average of about 70%. In fact, the averages of
the memory resource usage and the processing resource us-
age between the 500th day and the 1000th day are 72.8%
and 66.6% respectively.

The proposed method can thus be said to achieve ef-
ficient system operation that requires a low investment and
that maintains stability even under the load of ten million
devices.

5. Conclusion

We proposed a new load-distribution method called the
“dynamic-help method” that enables uTupleSpace to dis-
tribute load dynamically. Experimental results indicated that
our method achieved good scalability under the load of typ-
ical applications using sensor and actuator devices and good
feasibility for economical and stable operation.
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Appendix A: Processes for Better Performance

The number of sections a uTupleServer is in charge of in-
creases with dynamic load balancing. If the number or type
of uTuples registered to uTupleSpace changes constantly
and dynamic load balancing occurs frequently, every uTu-
pleServer can be in charge of all sections of the hash space
(hereinafter called the worst condition). Because all EFs and
CAs are copied to all uTupleServers in the worst condition,
the overhead reaches a maximum.

To avoid such a situation, we add some of the following
processes. Although we report the evaluation results for the
worst condition in Sect. 4, we can avoid the worst condition
as much as possible with these processes.

A.1 Assignment Manager Server Preferentially Selects
uTupleServer, which is Already in Charge of Sec-
tion that Overloaded uTupleServer is in Charge of, as
Helper Server

In the proposed method, a section of hash space is man-
aged by one or more uTupleServers with accumulatable flag
ON and zero or more uTupleServers with accumulatable flag
OFF. If any of these uTupleServers becomes overloaded,
the Assignment Manager Server preferentially selects an-
other one of the uTupleServers as a helper server. This pre-
vents an increase in uTupleServers that take charge of new
sections due to dynamic load balancing. For example, if
uTupleServer A with accumulatable flag ON is overloaded,
and uTupleServer B, which is in charge of the same section
with accumulatable flag ON, has a low load, B should be
the helper server. In this case, the load of A can be moved
simply by setting the flag of A to OFF. If B has already set
its flag to OFF, the load of A can be balanced simply by set-
ting the flag of B to ON. In these cases, it is not necessary to
copy EFs and CAs, unlike in the above example of dynamic
distribution.

A.2 Dynamic Distribution of Processing Load is Executed
Gradually

In the proposed method, a uTupleServer is in charge of more
than one section of hash space. If the processing of a uTu-
pleServer is overloaded, the Assignment Manager Server
does not need to select a helper server for each section of
which the overloaded uTupleServer is in charge. Even one
helper server can be enough to reduce the load. Because
having more helper servers than necessary results in a worse
condition, dynamic distribution of the processing load is not
executed all at once, but only partially. If the uTupleServer
is still overloaded, dynamic distribution is executed again.
This prevents an increase in uTupleServers that manage new
sections due to dynamic load balancing.

A.3 Load Monitoring Server Confirms Necessity for uTu-
pleServers to Manage Each Section of Hash Space

New uTuples are not accumulated in the uTupleServer with
accumulatable flag OFF. In addition, each uTuple has a life-
time, and an expired uTuple is removed by the Garbage Col-
lection process mentioned in Sect. 3.1. Therefore, all the
uTuples that are accumulated in the uTupleServer will be
removed over time. In such a situation, the counterparts of
EF/CA no longer exist on the uTupleServer. This means
the uTupleServer does not have to be in charge of that sec-
tion. Thus, the Load Monitoring Server queries the uTu-
pleServers to find out whether there are any sections that
a uTupleServer is managing that have no uTuples. If there
are, the Load Monitoring Server orders the uTupleServer to
stop managing those sections. This means the address of the
uTupleServer is removed from the line corresponding to the
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section in the assignment table.
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