
770
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

PAPER Special Section on Data Engineering and Information Management

Revision Graph Extraction in Wikipedia Based on Supergram
Decomposition and Sliding Update∗

Jianmin WU†a), Nonmember and Mizuho IWAIHARA†b), Member

SUMMARY As one of the popular social media that many people turn
to in recent years, collaborative encyclopedia Wikipedia provides informa-
tion in a more “Neutral Point of View” way than others. Towards this core
principle, plenty of efforts have been put into collaborative contribution and
editing. The trajectories of how such collaboration appears by revisions are
valuable for group dynamics and social media research, which suggest that
we should extract the underlying derivation relationships among revisions
from chronologically-sorted revision history in a precise way. In this pa-
per, we propose a revision graph extraction method based on supergram
decomposition in the document collection of near-duplicates. The plain
text of revisions would be measured by its frequency distribution of su-
pergram, which is the variable-length token sequence that keeps the same
through revisions. We show that this method can effectively perform the
task than existing methods.
key words: Wikipedia, collaboration, revision history

1. Introduction

In recent years, social media becomes more and more at-
tractive to many people since it involves means of interac-
tions among people in which they create, share, exchange
and comment contents among themselves in virtual commu-
nities and networks [3]. As a collaborative project, online
encyclopedia Wikipedia receives contribution from all over
the world [13] and its content is well accepted by those who
want reliable social news and knowledge.

Guiding by the fundamental principle of “Neutral Point
of View”, Wikipedia articles need plenty of extra editorial
efforts other than simply content expanding and fact updat-
ing. Users can choose to edit on an existing revision and
override the current one or revert to a previous revision.
However, there is no explicit mechanism in Wikipedia to
trace such derivation relationship among revisions, while the
trajectories how such collaboration appears in Wikipedia ar-
ticles in terms of revisions are valuable for group dynamics
and social media research [12]. Also, research exploiting re-
vision history for term weighting [2] requires clean history
without astray, which can be accomplished by such trajecto-
ries.

Manuscript received July 11, 2013.
Manuscript revised October 30, 2013.
†The authors are with Waseda University, Kitakyushu-shi,

808–0135 Japan.
∗This work is based on an earlier work: Revision graph extrac-

tion in Wikipedia based on supergram decomposition, In Proceed-
ing of Joint International Symposium on Wikis and Open Collabo-
ration, ACM, Hong Kong, 2013.

a) E-mail: Jianmin.wu@moegi.waseda.jp
b) E-mail: Iwaihara@waseda.jp

DOI: 10.1587/transinf.E97.D.770

Wikipedia now keeps all the versions’ contents for each
article and make the edit history publicly available. The
meta-data of the edit history, such as timestamps, contrib-
utors, and edit comments is also recorded. Figure 1 shows
a snapshot of typical Wikipedia edit history, which con-
sists of article revision content and meta-data. Most exist-
ing research modeling Wikipedia’s revision history choose
tree [7], [18] or graphs [12] to represent the relationship, but
few of them concern about the accuracy of their models.

We propose a method to model such trajectories as re-
vision graphs, where revisions and their derivation relation-
ships are well presented [19], from chronologically-sorted
revision history. We extract these directed acyclic graphs
based on supergram decomposition. The revision graph can
be outputted in the XML-based “GraphML” format [24] and
visualized by existing graph editor software, as shown in
Fig. 2. This paper is extending from [20] by incorporating
sliding update to improve efficiency, also detailed perfor-
mance studies are carried out.

For a given revision r, at least one parent revision rp

should be identified in r’s previous revisions, which involves
comparison with those revisions. The best candidate should
be decided by a certain similarity measure as well as the
characteristics of Wikipedia editing. We consider the chal-
lenge of revision graph extraction (RGE) is twofold. The
first part is the strategy that should be adopted to perform

Fig. 1 Typical edit history of Wikipedia.

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

WU and IWAIHARA: REVISION GRAPH EXTRACTION IN WIKIPEDIA BASED ON SUPERGRAM DECOMPOSITION AND SLIDING UPDATE
771

Fig. 2 Revision graph for first 1000 revisions of Wikipedia article “Edith
Wharton,” pink nodes indicate where branch happens.

comparisons over previous revisions. The second part is the
existing differencing method and similarity metric for pair-
wise comparison.

By such description, RGE is close to the classic near-
est neighbor search (NNS) problem in text mining: given a
collection of n points, build a data structure which, given
any query point, reports the data point that is closest to
the query [1]. However, RGE differs from NNS in prob-
lem setting. First, the dissimilarity among a revision set
is much lower than the text corpus that conventional NNS
deals with [15]. The most popular algorithm for NNS, LSH-
based algorithms [10], [11] would fail to distinguish among
such near-duplicates texts. Moreover, the existence of the
timestamps in the meta-data suggests that sequential rela-
tionship among revisions should be exploited.

There is another issue we should notice. The overview
of Wikipedia mining [14] shows that the text amount of diff
between two adjacent revisions is not proportional to the
length of the article, that is, users would not contribute more
text because of a longer article. With the relatively stable

edit contribution amount, the longer an article grows, the
less difference can be told by Jaccard distance, which sug-
gests that we need absolute measure.

The remaining part of this paper is organized as fol-
lows: In Sect. 2 we introduce existing work related to our
research. In Sect. 3 we explain the motivation and basic
process of supergram decomposition. We extend the model
in Sect. 4 by exploiting dependencies among revisions and
narrowing down comparison scope for scalability. Section 5
evaluates the result generated by our method and compare
with other representative methods by performance and pre-
cision evaluation. Finally we conclude our paper by sum-
marizing findings and discussing several key issues.

2. Related Work

As mentioned before, a revision history modeling method
should include two parts: comparison strategy and text dif-
ferencing method with similarity metric. Most existing
work focused on the second part. Fong et al. [9] proposed
a detailed text differencing algorithm that finds all the dif-
ferent parts, including the case of phrase movement and
sentence re-writing, between two given revisions based on
hierarchical decomposition and the longest common subse-
quence (LCS) method, which is however way too computa-
tionally expensive in terms of large scale revision compari-
son.

In an investigation on structure and dynamics of
Wikipedia’s breaking news collaborations [11], Keegan
et al. construct article trajectories of editor interactions as
they coauthor an article. Examining a subset of this cor-
pus, their analysis demonstrates that articles about current
events exhibit structures and dynamics distinct from those
observed among articles about non-breaking events. How-
ever, the similarity metric adopted in this research is over-
simplified and the correctness of the trajectories they build
is not assured.

In [8], Flöck et al. reconsider the algorithm for detect-
ing reverts, which is an important role of revision modeling.
This work refines the original definition of “revert” and pro-
poses an algorithm based on the mixture model of paragraph
alignment and comparison by LCS, slightly simplified than
[9]. This model still cannot achieve a precise text differenc-
ing result due to the LCS.

Cao et al. [5] proposed a version tree reconstruction
method for Wikipedia articles based on keyword clustering.
This method uses tf-idf (term frequency and inverted docu-
ment frequency) score to cluster similar revisions and then
LCS would be used for more precise comparison, which is
closer to string matching problem. The initial clustering suf-
fers from a fixed number of signature values.

Wu et al. [19] proposed a revision graph extraction
method for Wikipedia articles based on n-gram cover. An
n-gram is a consecutive occurrence of n letters or words in
a text. This research uses word-level n-gram distribution to
denote revisions of the given articles with timestamps and
find how a revision’s n-gram distribution can be formed by

772
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

specific previous revisions’. But this method still suffers
from error rate due to the plain model of n-gram diff score.

3. Supergram Decomposition

A revision set R is a set of revisions {r1, r2, . . . , rn}, where
each revision has a timestamp. A timestamp ordering ri <
rj is a total ordering on their timestamps, meaning that ri’s
timestamp is earlier than rj’s. The revision graph extrac-
tion problem on R is to find a directed acyclic graph (DAG)
where nodes are revisions and edges <ri, rj> are such that
ri < rj holds and rj is created directly from ri. We call ri as
rj’s revision parent. In general, a revision may have multi-
ple parents due to merge of revisions and the revision graph
is a DAG. But empirically such merges are rare, and in this
paper we focus on the case where only branches happen.

Based on the characteristics of Wikipedia editing, we
assume that the best candidate for rj is the one that takes
least efforts to convert to ri. More specifically:

a) Adding takes more efforts than deleting.
b) Long edits take more efforts than short edits.
c) Multiple short edits take more effort than a single
long edit
These assumptions require that the diff generated by

certain method should reflect the integrity of the original text
order as much as possible.

As the further research of [19], we carefully consider
the model of n-gram cover. The n-gram frequency compar-
ison method in n-gram cover model is from the shingling
method, which has been a conventional method in NNS [4],
[16]. In n-gram cover, only the different text among revi-
sions has been noted and measured. Diff caused by edit
behaviors will be detected as changes in n-gram frequency
distribution. Although the positional information among
tokens can be reserved partially by longer shingle (bigger
n), the integrity of different edits cannot be recovered. On
the other hand, it takes O(MN) time to achieve integrity by
the LCS-based diff algorithm, where M and N are the total
number of tokens in each revision. Although each article
in Wikipedia English poses 136.7 revisions in average [21],
the number of revisions often exceeds one thousand in pop-
ular articles. In such a situation, pairwise comparison on X
revisions by certain measures requires O(X2) comparisons,
which make full comparisons too expensive.

We find that there are some token sequences that keep
appearing throughout the whole revision set. For a small re-
vision set of several revisions, such token sequences is little
but with long length. As the size of the revision set grows
larger, long token sequences are split into shorter fragile due
to modifications. Formally, we define such units as:

Definition 3.1 (Supergram)
A supergram s = t1t2 . . . tn in a revision subset C ⊆ R,
where C is called a comparison scope, is an n-gram (n >=
2) such that s occurs in all the revision in C.

Ex. 3.1 Given the following revisions
R1: I am iOS device user.

R2: I am a core iOS device user.
R3: I am a light iOS device user.
R4: Of course I am an iOS device user.
R5: I am an iOS device user of course.

“I am” and “iOS device user” are supergrams, since they
both keep the same through R1 to R5 against other changes.

3.1 Word Transition Graph Construction

Given an article’s revision set Rwith revisions r1, r2, . . . , rn,
each of them consists of tokens from a vocabulary D =

{t1, t2, . . . , tl}. In the following paragraphs, we denote

• vi: vertex i labeled with ti;
• <vi, v j>: edge x from vi to vj;
• w(vi, v j): weight of <vi, v j>, labeled with the collection

frequency of bigram titj;
• out(vi): set of all edges from vi;
• in(vi): set of all edges to vi.

Definition 3.2 (Word transition graph)
Given a revision set R on vocabulary D, a word tran-
sition graph (WTG) G = (V, E) is a directed weighted
graph such that each vertex vi ∈ V denotes a term ti ∈ D.
For two terms ti and t j ∈ D, a weighted directed edge
e(vi, v j) ∈ E exists between their corresponding vertices
vi and v j if and only if the bigram tit j has a frequency
f (tit j) > 0 in R, and f (tit j) is assigned as the edge weight.

The word transition graph is allowed to contain cycles
since a multiple appearance of frequent terms causes a path
that starts and ends at the same vertex, as shown in Fig. 3.
On the other hand, there exist chain-like subgraphs at which
only one path exists, which correspond to Definition 3.1.
Here we define such structure formally:

Definition 3.3 (Chain)
A chain Q is a sequence of edges <v1, v2>, <v2, v3>, ..,
<vn−1,vn> (n ≥ 3) in G such that v1,..,vn are distinct, and
each middle vertex, called a chain vertex, vi (1 < i < n)
has only one incoming edge and one outgoing edge, i.e.
|out(vi)| = |in(vi)| = 1. The rest vertices in G are called
non-chain vertices.

Given a revision ri, and ri’s comparison scope Ci, a
word transition graph G = (V, E) will be constructed for ri

by scanning all revisions within Ci ∪ {ri}.

FOR r′ ∈ (Ci ∪ { ri })
FOR tk ∈ r′

IF tk ∈ V
w(vk−1, vk)← w(vk−1, vk) +1

ELSE
add <vk−1, vk> in E
w(vk−1, vk)← 1

Since each token tk is scanned only once, the construc-
tion time is proportional to the total token number L in the
revisions within Ci ∪ {ri}, i.e. O(L) time. After G is con-
structed, the indegree and outdegree of each vertex is clear

WU and IWAIHARA: REVISION GRAPH EXTRACTION IN WIKIPEDIA BASED ON SUPERGRAM DECOMPOSITION AND SLIDING UPDATE
773

Fig. 3 Word transition graph for Ex. 3.1.

so that the chain vertex set Vchain and non-chain vertex set
Vnon can be identified. Another scan will be executed to
extract supergram that between chain vertices. Then each
revision within Ci ∪ {ri} can be decomposed according to
the extracted supergrams and get the supergram frequency
distribution.

4. Sliding Update and Diff Evaluation

We start this section by the full process of revision graph
extraction based on supergram decomposition with sliding
update on revision collection R. The comparison stage con-
sists of 5 stages:

1. Pre-processing
For each revision ri ∈ R, generate its unigram token
sequence.

2. Comparison scope computing
Calculate ri’s comparison scope Ci based on ri’s times-
tamp.

3. Sliding decomposition
a. If i = 0, construct a word transition graph Gi of all
the revisions within Ci,decompose ri and all revisions
in Ci based on the supergram set S extracted from Gi.
b. If i > 0, perform sliding update for Gi−1and the su-
pergram frequency distribution.

4. Supergram diff score computing
Compare ri with all revisions in Ci by a diff score de-
fined on supergrams.

5. Candidate selection
For ri, Pick up the revisions with lowest k supergram
diff score as the candidates for parents.

The following figure shows the work flow of decomposition
based on sliding word transition graph.

4.1 Pre-Processing

We first split the original revision text into a unigram to-
ken sequence. The text content in the original revision files
contains plenty of Wiki Markups [23], which give specific
metadata tags on plain text. While splitting the text, such
markups are extracted by regular expression and will be re-
served as single tokens in the following steps. The second
task is replacing the URLs appearing in the text. No matter
how many terms a URL involves, it has no more contribu-
tion to add a new URL than to add a single word. We replace
each URL with a 16-byte string generated by MD5 for con-
sistency.

Fig. 4 Full process of supergram decomposition by sliding update.

4.2 Comparison Scope Computing

Recall the observation of supergrams we mentioned before:
a narrower scope will produce longer supergrams. This is
because the number of edits is proportional to the scope size
and fewer edits mean smaller chances, and supergrams tend
to be undivided. Longer supergrams are preferable in super-
gram decomposition because it reserves more integrity and
reduces the total number of supergrams.

We can draw the assumption based on the characteris-
tics of Wikipedia editing: The further one revision is from
the current revision, the less possible that the current one is
derived from that revision.

But before we limit the comparison scope to a fixed
number of previous revisions, we consider the frequent edit
behavior within a certain period of time as another impor-
tant factor according to the timestamps in the edit history’s
meta information. Intense editing activity could be caused
by edit wars, increasing popularity of the article, or immedi-
ate updates after related events happen, and the total number
of edits in a week could easily exceed any preset number.
Figure 5 shows the edit count of Wikipedia article “Barack
Obama” during 2008, the year of the U.S. presidential elec-
tion, and significant peak can be found in November, when
the election was held. Thus, all the previous revisions within
certain time span should be examined, regarding the fact that
contributors’ attention can last for a period of time.

A fixed scope would not be able to capture the whole
process of the intense edit activity, while fixed time span can
cover only little revisions. Considering such trade-off, we
employ maximum comparison scope to denote the largest
number of previous revisions to be compared, which is de-

774
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

Fig. 5 Edit count of Wikipedia article “Barack Obama” during 2008, the
year of the U.S. presidential election†.

fined as below.

Definition 4.1 (Maximum comparison scope)
Given a revision history H = {(r1, ts1), (r2, ts2), . . . ,
(rm, tsm)}, where (ri, tsi) denote a revision ri with its
timestamp tsi, the maximum comparison scope C for revi-
sion rk is the collection of revisions determined by either:

a) C = {rk−S L , rk−S L+1, . . . , rk−1}, if tS k−S L
− tS k > Tl,

other wise
b) All revisions within Tl.

where S L denotes the minimum revision number to ensure
enough comparison for unpopular documents, Tl denotes
the minimum time span to avoid the limit of fixed number
of revision during the periods of intense edits. For exam-
ple, for a popular article, the minimum revision number SL

will not be applied because we might loss important revert
or rollback by stopping at the middle.

Notice that there could be a series of consecutive edits
by the same contributor. In this case, we take only the latest
revision and omit the others, since we focus on the collab-
orative authoring and editing process rather than individual
perspective.

Another issue we should notice is the phenomenon of
remote copy, which is the behavior that copying a piece of
text from an ancient revision such that there is no appear-
ance of such text within the scope of Maximum compari-
son scope. Simply expanding the scope to that ancient re-
vision includes unnecessary revisions and lowers the effi-
ciency. We choose to include this kind of ancient revision
as individual revision alone. Formally, an ancient revision is
identified as follows:

A revision r j is a potential remote ancestor of ri if and
only if there is a bigram bk that appears in r j and ri but not
in revisions between r j and ri.

4.3 Sliding Update

So far for each revision, a word transition graph will be con-
structed and the supergram frequency distribution according
to the graph can be calculated. Notice that the adjacent com-
parison scopes are mostly overlapped, i.e. most of their revi-
sions are the same, it is much efficient to update the different

†http://en.wikipedia.org/wiki/Barack Obama

Fig. 6 Examples of chain breaking situations.

revisions upon an existing transition graph than to construct
a new transition graph for all revisions in the later compar-
ison scope. Moreover, by update the changed supergram
frequency of the updated transition graph, we do not have to
perform supergram decomposition for overlapped revisions
again. Such updates on transition graph and supergram dis-
tribution is called sliding update.

The sliding update considers two operations: adding
the new revision, and deleting the revisions that are out of
the new scope. The adding operation on WTG is basically
the same with the construction of WTG but with more con-
cerns on the update for supergram distribution. For each
token ti that is read from the new revision, if edge <ti−1, ti>
exists in the WTG, we should simply update w(ti−1,ti) and
the corresponding supergram frequency. But if not, a new
edge is created and a new bigram of (ti−1ti) will be added
into supergram distribution. The new edge <ti−1,ti> con-
nects vertices in the following situations:

a. Non-chain vertex to Non-chain vertex chain vertex.
b. Chain vertex to chain vertex.
c. Non-chain vertex to chain vertex.
d. Chain vertex to non-chain vertex.
Figure 6 shows examples of the four situations, where

a circle indicates a chain vertex and an octagon indicates
a non-chain vertex. Also, since in situation b, c and d the
chain property of existing chain vertex has been violated by
the new edge, the involved chain has to be broken and an
update on the corresponding supergram in the distribution
is needed. For a chain H = <v1,v2>, <v2,v3>, . . . ,<vi,vi+1>
..,<vn−1,vn> (1 < i < n, n ≥ 3) that breaks at vi, the existing
entry of the corresponding supergram s = (t1 . . . ti . . . tn) in
the supergram distribution will be replaced by the entry of
(t1...ti) and (ti . . . tn) with the same frequency.

To delete a revision from the transition graph is the in-
verse operation of adding. The edge weights will be sub-
tracted according to the bigram frequency in the deleted re-
vision. When the weight of an edge turns to 0, that edge
should be deleted. Notice that the involved vertices might
regain the chain property likewise, so an update of merging
entry in the supergram distribution should be needed.

After the sliding update, the word transition graph is
ready for further updates and the supergram frequency dis-
tribution can be used for pairwise comparison.

WU and IWAIHARA: REVISION GRAPH EXTRACTION IN WIKIPEDIA BASED ON SUPERGRAM DECOMPOSITION AND SLIDING UPDATE
775

4.4 Supergram Diff Score Computing

For pairwise revision comparison, we first create the super-
gram diff for two revisions, and then calculate the super-
gram diff score to measure their difference.

Definition 4.2 (Supergram diff)
Given a supergram set S , we denote the supergram fre-
quency distribution of revision ra as f (si, ra) (si ∈ S). For
two revisions ra and rb, the supergram diff SD is the set of
supergrams with a non-zero residual frequency between
ra and rb:

S D(ra, rb) = {s ∈ S | | f (s, ra) − f (s, rb)| > 0} (1)

Definition 4.3 (Supergram diff score)

diffScore(ra, rb) = w1 ·
∑

s∈S Dadd
| f (s, ra) − f s,

rb·|S | + w2 · s′ ∈ S Ddel f s′, ra − f s′, rb.log|s′| (2)

where SDadd is the set of all supergrams such that f (s, ra) −
f (s, rb) > 0, and SDdel is defined similarly, wi is the weight
for discrimination between adding and deleting operations.

We set w1 = 0.65 and w2 = 0.35 empirically to maxi-
mize the difference. As heuristics, the logarithms are to the
base of 10, since the deleting operation is a less effort-taking
job.

4.5 Candidate Selection and Output

After the calculation of supergram diff score has been done,
revisions will be ranked by their scores. Basically, the one
with the lowest score will be considered as the parent revi-
sion. However, sometimes there could be multiple candi-
dates with the same score. In that case, we select the latest
one, since.

Once every revision’s parent revision has been found,
the revision graph is finished. We choose to serialize the
revision graph in a common format for graph, “GraphML”.
Then the graph can be utilized by other software or pro-
grams.

5. Experimental Evaluation

To evaluate the precision and performance, we conduct two
accuracy evaluations and an execution time test on the pro-
posed method with 4 representative methods: sentence-
level Jaccard distance [18], keyword clustering [5], n-gram
cover [19] and the conventional token-level Edit distance.
For each method, we compare its result revision graphs with
manually extracted revision graphs on the dataset of selected
Wikipedia articles.

5.1 Dataset

Long article with many revisions are good for distinguishing
the performance and effectiveness of methods in the RGE

problem because they involve more edit behavior. We en-
list 50 articles in Wikipedia that satisfy the following basic
criteria:

• In English Wikipedia.
• Has at least 300 tokens in the latest revision.
• Has at least 200 revisions.

More precisely, we select the articles by four categories:

• Random articles (RA): We use the official “Random ar-
ticle” function on Wikipedia page and pick up the qual-
ified articles in order to be non-bias sampling. RA rep-
resents the majority of Wikipedia article and all meth-
ods are supposed to work with them.

• Featured (FA) and non-featured articles (NFA): An ar-
ticle with a “Feature” label in Wikipedia is the sym-
bol of high quality content, which requires much more
effort than original articles [17]. We adopt the arti-
cle list from WPQAC (Wikipedia Quality Assessment
Corpus) [6] as the second part. WPQAC is constructed
for evaluating relationship between the writing process
and article quality. It includes 10 pairs of comparable
FA and NFA that cover a broad quality spectrum, each
with nearly identical text volume (in characters) and
edit frequency.

• Top-edited articles: We select the top 15 articles with
the most revisions in English Wikipedia, according
to the official statistics [22]. Such articles include all
kinds of edit behaviors.

The titles of the articles in the dataset are listed in Ta-
ble 1, with the general statistics including their total num-
ber of revision (Rev. #), total number of unique contributors
(Contributor #, unregistered users’ number is shown in the
parentless), the average token number of each revision (Avg.
Token #) and the number of branches (Br. #) in the manual
graph. The articles in the dataset cover topics that vary from
political, historical issues to bibliography. The right part of
the table will be addressed in Sect. 5.3.

For each article, we dump the first 200 revisions from
the official export site, with an exception that the article of
“1941 Atlantic hurricane season” has only 149 revisions.
We perform the manual extraction by a 3-researcher team
and build up a ground truth dataset of 9949 revisions in-
volving more than 14 million tokens

5.2 Precision Evaluation

In this evaluation, all the revisions have been pre-processed
according to Sect. 4.1 so that all methods start with the same
token sequence. Each compared method adopts the default
parameter and initial setting, and the comparison scope for
each revision is all of its previous revisions.

The parent accuracy is evaluated as the percentage of
the revisions that has the same parent revision as in the
ground truth revision graph, which is shown in Fig. 7.

We evaluate branching errors that happen in differ-
ent stages by reachability comparison. Given two revision

776
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

Table 1 Article list and Execution time test.

graphs G1,G2 on the same revision set D, the reachability
accuracy of G2 on G1 is defined as follows:

C(G1,G2) =
2
∣∣∣G+1 ∩G+2

∣∣∣
|D|2 (3)

where G+1 , G+2 are the transitive closures of G1, G2, |D|2/2
is half the number of all the node pairs. By formula (3)
we focus on how far (in terms of number of total descant
revisions) an error can reach, so errors that happen in the

early stage or those that involve more succeeding revisions
have greater loss in accuracy.

In both evaluations, the proposed method prevails on
most of the test articles, as we can see from the scatter plot
and the average accuracy. The Edit distance method achieve
the second best position because it can separate more in-
tact diff, but it fails to deal with the case of text movement
and expansion. The n-gram cover method results in more
false-positive branches because it treats the deletion content

WU and IWAIHARA: REVISION GRAPH EXTRACTION IN WIKIPEDIA BASED ON SUPERGRAM DECOMPOSITION AND SLIDING UPDATE
777

Fig. 7 Parent accuracy result.

Fig. 8 Reachability accuracy.

as the same as the adding content and fails to handle those
revisions that both addition and deletion happen. The key-
word clustering method performs worse than n-gram cover
on most articles with more false-negative branches. The Jac-
card distance method has the most false-negative branches
in the later stage of the revision set, since the relative differ-
ence is too small to distinguish a branch. All methods fail
to choose the nearest revision as the parent for those severe
vandalism cases of heavily deletion or even full text dele-
tion.

Regarding the difference among article categories, the
only finding is that the proposed method has slightly bigger
advantage to Edit distance method on RA and TA categories
than on FA and NFA.

5.3 Execution Time Test

We also run an execution time test for 3 methods with the
top precision, Edit distance, n-gram cover and the proposed
method.

Each method is implemented in Java with default pa-
rameter setting and executed in the same environment. Revi-
sions are with the same pre-processing equipped with com-
parison scope based on timestamps so that the execution
time will be recorded by the same criteria.

In Table 1, we list up the articles’ ID and their aver-
age revision token numbers. In each cell under the name of
method, the average execution time (by millisecond) that a

method takes to determine the parent revision for each re-
vision is shown. The n-gram cover method achieves best
efficiency because it treats and evaluates revisions in the
simplest way so that the pairwise comparison is performed
in a linear time. The proposed method takes about 2.5
times more than n-gram model due to the extra cost of word
transition graph construction and supergram decomposition,
which is the trade-off between precision and efficiency. The
edit distance method’s result is much slower than others,
given that the time complexity is square time.

6. Conclusion

In this paper, we proposed supergram technique for accurate
revision graph extraction from Wikipedia edit history. Revi-
sion are decomposed and compared by supergrams, which
are extracted from a word transition graph. Our proposed
method outperforms existing text comparison methods. In
the future, we will investigate further optimization of com-
parison scopes, and develop applications utilizing extracted
revision graphs, such as visualizations.

Acknowledgments

This research was in part supported by “Ambient SoC
Global Program of Waseda University” of the Ministry of
Education, Culture, Sports, cience and Technology, Japan
nd JSPS KAKENHI Grant Number 25330367.

References

[1] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” Commun. ACM,
vol.51, no.1, pp.117–122, Jan. 2008.

[2] A. Aji, Y. Wang, E. Agichtein, and E. Gabrilovich, “Using the past
to score the present: Extending term weighting models through re-
vision history analysis,” CIKM ’10, pp.629–638, ACM, New York,
NY, USA, 2010.

[3] T. Ahlqvist, A. Bäck, M. Halonen, and S. Heinonen, “Social me-
dia roadmaps exploring the futures triggered by social media,” VTT
Tiedotteita, vol.2454, p.13, 2008.

[4] A.Z. Broder, “On the resemblance and containment of documents,”
Proc. Compression and Complexity of Sequences, pp.21–29, Posi-
tano, Italy, 1997.

[5] Z. Cao and M. Iwaihara, “Wikipedia version tree reconstruction by
clustering revisions through keywords,” IEICE Technical Report,
DE2011-32, 2011.

[6] J. Daxenberger and I. Gurevych, “A corpus-based study of edit cat-
egories in featured and non-featured Wikipedia articles,” Proc. 24th
COLING, pp.711–726, Mumbai, India, 2012.

[7] M. Ekstrand and J.T. Riedl, “rv you’re dumb: Identifying discarded
work in Wiki article history,” WikiSym ’09, ACM, New York, NY,
USA, 2009.

[8] F. Flöck, D. Vrandečić, and E. Simperl, “Revisiting reverts: Accu-
rate revert detection in Wikipedia,” Proc. Hypertext and social me-
dia, pp.3–12, ACM, New York, USA, 2012.

[9] P.K. Fong and R.P. Biuk-Aghai, “What did they do? Deriving high-
level edit histories in Wikis,” WikiSym ’10, ACM, New York, NY,
USA, 2010.

[10] P. Indyk and R. Motwani, “Approximate nearest neighbor: Towards
removing the curse of dimensionality,” Proc. STOC ’98, pp.614–
623, Dallas, USA, 1998.

778
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

[11] P. Indyk, “Nearest neighbors in high-dimensional spaces,” in Hand-
book of Discrete and Computational Geometry, pp.877–892, CRC
Press, 2003.

[12] B. Keegan, D. Gergle, and N. Contractor, “Staying in the Loop:
Structure and dynamics of Wikipedia’s breaking news collabora-
tions,” WikiSym ’12, ACM, New York, NY, USA, 2012.

[13] A. Lih, “Wikipedia as participatory journalism: Reliable sources:
Metrics for evaluating collaborative media as a news resource,” Proc.
Int. Symp. Online Journalism, 2004.

[14] O. Medelyan, D. Milne, C. Legg, and I.H. Witten, “Mining meaning
from Wikipedia,” Int. J. Hum.-Comput. Stud., vol.67, no.9, pp.716–
754, Sept. 2009.

[15] G.S. Manku, A. Jain, and A.D. Sarma, “Detecting near-duplicates
for web crawling,” WWW ’07, pp.141–150, ACM, New York, NY,
USA, 2007.

[16] U. Manber, “Finding similar files in a large file system,” Proc.
USENIX Conference, pp.1–10, 1994.

[17] B. Stvilia, M.B. Twidale, L.C. Smith, and L. Gasser, “Informa-
tion quality work organization in Wikipedia,” Journal of the Amer-
ican Society for Information Science and Technology, vol.59, no.6,
pp.983–1001. 2008.

[18] M. Sabel, “Structuring wiki revision history,” WikiSym ’07, ACM,
New York, NY, USA, pp.125–130, 2007.

[19] J. Wu and M. Iwaihara, “Wikipedia revision graph extraction based
on n-gram cover,” Proc. Int. Workshop on Graph Data Management
and Mining, WAIM 2012, pp.29–38, 2012.

[20] J. Wu and M. Iwaihara, “Revision graph extraction in Wikipedia
based on supergram decomposition,” Proc. Int. Joint International
Symposium on Wikis and Open Collaboration, ACM, Hong Kong,
2013.

[21] T. Yasseri and J. Kertész, “Value production in a collaborative en-
vironment,” Journal of Statistical Physics, vol.151, pp.414–439,
Springer US, 2013.

[22] http://en.wikipedia.org/wiki/Wikipedia:Database reports/Pages
with the most revisions

[23] http://en.wikipedia.org/wiki/Help:Wiki markup
[24] http://graphml.graphdrawing.org/specification.html

Jianmin Wu received his B.S. degrees in
Software Engineering from Nanjing University
in 2010. He received his D.Eng. degree from
Graduate School of IPS, Waseda University in
2012. He is now a Ph.D candidate in Waseda
University.

Mizuho Iwaihara received his B.Eng,
M.Eng. and D.Eng. degrees all from Kyushu
University, in 1988, 1990, and 1993 respec-
tively. He was a research associate and then
associate professor in Kyushu University, from
1993 to 2001. From 2001 to 2009, he was an
associate professor at Department of Social In-
formatics, Kyoto University. Since 2009, he is
a professor at Graduate School of IPS, Waseda
University. He is a member of IEICE, IPSJ,
ACM and IEEE CS.

