
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014
779

PAPER Special Section on Data Engineering and Information Management

Probabilistic Frequent Itemset Mining on a GPU Cluster

Yusuke KOZAWA†a), Nonmember, Toshiyuki AMAGASA††, Member, and Hiroyuki KITAGAWA††, Fellow

SUMMARY Probabilistic frequent itemset mining, which discovers
frequent itemsets from uncertain data, has attracted much attention due to
inherent uncertainty in the real world. Many algorithms have been pro-
posed to tackle this problem, but their performance is not satisfactory be-
cause handling uncertainty incurs high processing cost. To accelerate such
computation, we utilize GPUs (Graphics Processing Units). Our previous
work accelerated an existing algorithm with a single GPU. In this paper, we
extend the work to employ multiple GPUs. Proposed methods minimize the
amount of data that need to be communicated among GPUs, and achieve
load balancing as well. Based on the methods, we also present algorithms
on a GPU cluster. Experiments show that the single-node methods real-
ize near-linear speedups, and the methods on a GPU cluster of eight nodes
achieve up to a 7.1 times speedup.
key words: GPU, uncertain databases, probabilistic frequent itemsets

1. Introduction

Uncertain data management is attracting considerable in-
terest due to inherent uncertainty in real-world applications
such as sensor-monitoring systems. For example, when an-
alyzing purchasing behavior of customers using RFID sen-
sors, there may be inaccurate sensor readings because of er-
rors. In addition to this example, uncertain data take place
in many situations. The major cause of uncertainty involves
limitations of equipment, privacy concerns, or statistical
methods such as forecasting. To deal with such uncertain
data, uncertain databases have recently been developed [2].

In the area of uncertain data management, frequent
itemset mining [3] from uncertain databases is one of the im-
portant research issues. Since the uncertainty is represented
by probability, this problem is called probabilistic frequent
itemset mining. Many algorithms have been proposed to
tackle probabilistic frequent itemset mining [6], [15], [17],
[18]. However, existing algorithms suffer from performance
problems because the computation of probability is highly
time-consuming. It is thus necessary to accelerate this com-
putation in order to handle large uncertain databases.

To this end, GPGPU (General-Purpose computing on
Graphics Processing Unit) is an attractive solution. GPGPU
refers to performing computation on GPUs (Graphics Pro-

Manuscript received July 12, 2013.
Manuscript revised October 29, 2013.
†The author is with the Graduate School of Systems and In-

formation Engineering, University of Tsukuba, Tsukuba-shi, 305–
8573 Japan.
††The authors are with the Faculty of Engineering, Informa-

tion and Systems, University of Tsukuba, Tsukuba-shi, 305–8573
Japan.

a) E-mail: kyusuke@kde.cs.tsukuba.ac.jp
DOI: 10.1587/transinf.E97.D.779

cessing Units), which are originally designed for processing
3D graphics. GPGPU has received much attention from not
only the field of high performance computing but also many
other fields such as data mining [5], [7], [12], [14], [16]. This
is because GPUs have more than hundred processing units
and can process many data elements with high parallelism.
It is also known that GPUs are energy-efficient and have
higher performance-to-price ratios than CPUs. In addition,
because the GPU architecture is relatively simpler than the
CPU architecture, GPUs have been evolving rapidly [20].

By leveraging such a promising processor, our previ-
ous work [9] accelerated an algorithm of probabilistic fre-
quent itemset mining. Meanwhile, GPU clusters, which are
computer clusters where each node has one or more GPUs,
have emerged as a powerful computing platform, such as
HA-PACS,∗ TSUBAME2.0,∗∗ and Titan.∗∗∗ Thus, it is in-
creasingly important to harness the power of multiple GPUs
and GPU clusters. The utilization of multiple GPUs gives
us further parallelism and larger memory spaces. However,
employing multiple GPUs has the problem that each GPU
has a separate memory space. If one GPU requires data that
reside in another GPU, the data need to be communicated
via PCI-Express bus. Since the PCI-Express latency is much
higher than the GPU-memory latency, it is probable that the
communication becomes a bottleneck. It is therefore desir-
able to reduce data dependencies among data fragments on
different GPUs.

This paper proposes multi-GPU methods that take into
account the above concerns. First, we develop methods on
a single node with multiple GPUs, and then we extend the
methods to use a GPU cluster. The proposed methods re-
duce data dependencies by distributing candidates of prob-
abilistic frequent itemsets among GPUs. In addition, the
methods consider load balancing, which is also an impor-
tant issue to achieve scalability. Experiments show that the
single-node methods realize near-linear speedups, and the
methods on a GPU cluster of eight nodes achieve up to a 7.1
times speedup.

The rest of this paper is organized as follows. Section 2
explains preliminary knowledge of proposed methods. Then
Sect. 3 describes our proposed methods that utilize multiple
GPUs. The methods are empirically evaluated in Sect. 4.
Section 5 reviews related work, and Sect. 6 concludes this

∗http://www.ccs.tsukuba.ac.jp/CCS/eng/
research-activities/projects/ha-pacs

∗∗http://www.gsic.titech.ac.jp/en/tsubame2
∗∗∗http://www.olcf.ornl.gov/titan

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

780
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

paper.

2. Preliminaries

This section describes necessary knowledge to understand
our proposed methods. Section 2.1 defines the problem
that this paper deals with, i.e., probabilistic frequent item-
set mining. Then a baseline algorithm [15] is explained in
Sect. 2.2. The algorithm on a single GPU [9] is described in
Sect. 2.3.

2.1 Probabilistic Frequent Itemsets

Let I be a set of all items. A set of items X ⊆ I is called
an itemset, and a k-itemset means an itemset that contains
k items. An uncertain transaction database U is a set of
transactions, each of which is a triplet of an ID, an item-
set, and an existential probability. An existential probability
stands for the probability that a transaction really exists in
the database. Table 1 shows an example of uncertain trans-
action database, where each row corresponds to a transac-
tion.

Uncertain transaction databases are often interpreted
with possible worlds model. This model considers that an
uncertain transaction database generates possible worlds.
Each possible world is a distinct subset of the database and
represents an instance of the database. For example, the
database of Table 1 generates 16 possible worlds: ∅, {T1},
{T2}, {T3}, {T4}, {T1,T2}, etc. Each possible world is prob-
abilistically generated according to the existential probabil-
ities. For instance, the world {T1,T2} is generated with the
probability that T1 and T2 exist, and T3 and T4 do not exist.
Hence the probability is 0.6 ·0.8 · (1−0.5) · (1−0.3) = 0.168.

The concept of support is used to define conventional
frequent itemsets. The support of an itemset X is denoted as
sup(X) and means the number of transactions that include
the itemset X. In this settings, the itemset X is regarded
as frequent if the support is at least a user-specified thresh-
old minsup. Although this definition works well for cer-
tain transaction databases, another concept is necessary to
deal with uncertain transaction databases, because the sup-
port varies with possible worlds.

Since possible worlds are generated probabilistically,
the distribution of support can be denoted by a probabil-
ity mass function. The probability mass function of the
support of an itemset X is called a Support Probability
Mass Function (SPMF) fX . The function fX takes an in-
teger i ∈ {0, 1, . . . , |U|}, whereU is an uncertain transaction
database. fX(i) represents the probability that the support of
X equals i.

An itemset X is called a Probabilistic Frequent Itemset
(PFI) if

P(sup(X) ≥ minsup) =
|U|∑

i=minsup

fX(i) ≥ minprob, (1)

where U is an uncertain transaction database, and minsup

Table 1 An uncertain transaction database.

ID Itemset Probability

T1 {a, b, c} 0.6
T2 {a, b} 0.8
T3 {a, c, d} 0.5
T4 {a, b, c, d} 0.3

and minprob ∈ (0, 1] are user-specified thresholds. Proba-
bilistic frequent itemset mining is to extract all probabilistic
frequent itemsets, given an uncertain transaction database,
minsup, and minprob.

2.2 pApriori Algorithm

Sun et al. [15] proposed a pApriori algorithm, which adapts
the classical Apriori algorithm [4] to uncertain databases.
The pApriori algorithm comprises two procedures:

1. Generating a set of candidate k-itemsets Ck from a set
of (k − 1)-PFIs Lk−1

2. Extracting a set of k-PFIs Lk from Ck

The pApriori algorithm continues these procedures al-
ternately with incrementing k by one until no additional PFIs
are detected. Note that, in the beginning of the algorithm,
k’s value is one and candidate 1-itemsets are singletons that
contain items in an input databaseU. Eventually the pApri-
ori algorithm returns all the PFIs extracted fromU.

2.2.1 Generating Candidates

Candidates are generated in two phases: merging and prun-
ing phases.

The merging phase checks whether pairs of (k − 1)-
PFIs are joinable: Two (k − 1)-itemsets X and Y satisfy the
condition X.item1 = Y.item1 ∧ · · · ∧ X.itemk−2 = Y.itemk−2 ∧
X.itemk−1 < Y.itemk−1, where X.itemi denotes the ith item
of X.† If X and Y are joinable, a new candidate k-itemset is
created as the union of X and Y . This candidate is stored to
a set of candidate k-itemsets Ck.

The pruning phase prunes candidates using the follow-
ing lemma [15]:

Lemma 1 (Anti-monotonicity). If an itemset X is a PFI,
then any itemset X′ ⊂ X is also a PFI.

The contraposition of this lemma yields that if any
itemset X′ ⊂ X is not a PFI, then the itemset X is not a PFI
either. Hence a candidate k-itemset can be pruned out when
any size-(k − 1) subset of the candidate is not contained in a
set of (k − 1)-PFIs Lk−1. If the candidate can be pruned out,
it is deleted from Ck.

2.2.2 Extracting Probabilistic Frequent Itemsets

In order to determine whether or not an itemset X is a
PFI, the SPMF of X needs to be computed and assigned to

†Items in an itemset are lexicographically ordered.

KOZAWA et al.: PROBABILISTIC FREQUENT ITEMSET MINING ON A GPU CLUSTER
781

Eq. (1). However, a naı̈ve solution to compute SPMFs is
considered to be intractable, because the number of possible
worlds is exponentially large. To address this problem, Sun
et al. [15] proposed two algorithms: dynamic-programming
and divide-and-conquer approaches. They showed that the
divide-and-conquer algorithm is more efficient.

Although the algorithm is able to compute SPMFs in
O
(
n log n

)
time, it is still a time-consuming task. Thus, it

is desirable to prune infrequent itemsets without computing
the SPMFs. Let cnt(X) be the number of transactions that
include an itemset X in an uncertain transaction databaseU
regardless of existential probabilities. Besides, let esup(X)
be the expected value of sup(X). With the two values, Sun
et al. proved two lemmas that enable us to prune candidates
in O (n) time [15].

2.3 Single-GPU Parallelization

The single-GPU method [9] follows the pApriori algorithm
and consists of generating candidates and extracting PFIs.
Candidates are generated on a GPU by a parallel version of
the algorithm described in Sect. 2.2.1. Then PFIs are ex-
tracted with four steps: inclusion check, pruning, filtering,
and computing SPMFs. For more details, readers are en-
couraged to refer to the paper [9].

Inclusion check judges whether transactions include
each candidate. Since the information that a transaction in-
cludes a candidate can be represented by one bit, the result
of inclusion check for a candidate is stored as an array of bit-
strings, called an inclist. By using inclists of (k−1)-itemsets,
inclusion check for k > 1 can be processed fast. The inclist
of a k-itemset X is computed as bitwise AND operations be-
tween two inclists of (k − 1)-PFIs that are used to create the
itemset X.

In the pruning step, candidates are pruned by comput-
ing the two values mentioned in Sect. 2.2.2. Then, non-
pruned candidates become subject to the filtering step. For
each candidate, this step filters out transactions that do not
include the candidate, because such transactions do not con-
tribute to the SPMF of the candidate. With this filtering, the
number of transactions to compute the SPMF of an item-
set X decreases from |U| to cnt(X). The next step computes
the SPMF of this candidate and the algorithm determines
whether the candidate is a PFI or not.

3. Multi-GPU Parallelization

In a multi-GPU system, each GPU has a separate memory
space. If data dependencies exist among GPUs, GPUs need
to communicate with each other via PCI-Express bus. Thus
it is important how to distribute data to be processed on
GPUs, so that data dependencies are minimized.

Multi-GPU systems can be considered as a kind of
distributed-memory systems. Meanwhile, there exists much
work on frequent itemset mining for distributed-memory
systems. Zaki [19] classified data-distribution schemes that
existing algorithms employ into three: count distribution,

Algorithm 1: Prefix distribution
1 Initialization (k = 1)
2 Inclusion check and pruning on the CPU
3 Distribute candidates C1 and transfer inclists to GPUs
4 Filtering and computing SPMFs on GPUs
5 Gather 1-PFIs from GPUs to the CPU

6 Distribution (k = 2)
7 Generate candidate 2-itemsets on the CPU
8 Distribute the candidates C2 to GPUs by prefix

9 while a set of candidates Ck � ∅ do
10 // Inclusion check uses inclists of (k − 1)-itemsets
11 Extract k-PFIs on GPUs
12 Gather the k-PFIs from GPUs to the CPU
13 Broadcast all the k-PFIs to GPUs
14 k ← k + 1
15 Generate candidate k-itemsets on GPUs

data distribution, and candidate distribution. In this paper,
we propose methods employing the candidate-distribution
scheme, because this scheme enables GPUs to compute
SPMFs independently, unlike the other two schemes.

Section 3.1 describes methods on a single node
equipped with multiple GPUs. Then, Sect. 3.2 extends the
methods to use a GPU cluster.

3.1 Single-Node Methods

3.1.1 Prefix Distribution

We here describe an algorithm based on a naı̈ve candidate-
distribution scheme. This algorithm is called Prefix Distri-
bution (PD), because the algorithm distributes candidates
by exploiting the property that two candidates with differ-
ent prefixes are not joinable. Therefore if we partition can-
didates with prefixes, GPUs can generate candidates using
their own PFIs. Algorithm 1 shows a pseudocode of PD. PD
is divided into three phases: initialization, distribution, and
loop phases.

In the initialization phase, PD extracts 1-PFIs. PD
firstly generates candidate 1-itemsets from an input uncer-
tain transaction database, and then conducts inclusion check
and pruning on the CPU in Line 2. By processing inclu-
sion check and pruning on the CPU rather than on GPUs,
the amount of data transfer to GPUs reduces, because the
database is unnecessary in later iterations. Although inclu-
sion check and pruning are performed individually in the
single-GPU method, because it is more suitable for GPU’s
architecture, these operations can be executed simultane-
ously on the CPU. Thus PD performs these two operations at
the same time. Non-pruned candidates are evenly distributes
to GPUs (Line 3). Inclists of all the non-pruned candidates,
which are necessary in later inclusion check, and the array
of probabilities are also transferred to GPUs. Then GPUs
carry out filtering and compute SPMFs, and copy 1-PFIs to
the CPU (Lines 4–5).

In the distribution phase, PD generates candidate 2-
itemsets from the 1-PFIs on the CPU in Line 7, and dis-

782
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

(a) Candidates are imbalanced. (b) Candidates are balanced.

Fig. 1 Prefix distribution of candidates.

tributes the candidates into GPUs according to their prefixes
in Line 8. A naı̈ve way to distribute candidates is to as-
sign prefixes to GPUs in round robin. However, this results
in load imbalance among GPUs. For example, if there two
GPUs and six 1-PFIs {a}, {b}, {c}, {d}, {e}, and {f}, then can-
didate 2-itemsets can be assigned into GPUs as shown in
Fig. 1(a). In this case, GPU 1 and GPU 2 handle 12 and 9
candidates, respectively. On the other hand, if the candidates
are distributed as shown in Fig. 1(b), GPU 1 and GPU 2 deal
with 11 and 10 candidates, respectively. The difference is
small in this example, but it becomes more apparent as the
numbers of prefixes and GPUs get larger. Thus we use the
second way of prefix distribution.

At this point, GPUs have all the necessary data for pro-
cessing: inclists, candidates, and probabilities. Each GPU
extracts k-PFIs from the assigned candidates by using the
single-GPU method in Line 11. The CPU gathers the k-PFIs
from GPUs in Line 12. The collected k-PFIs on the CPU
are broadcasted to all the GPUs in Line 13, because the k-
PFIs are necessary to do pruning in candidate generation. In
Lines 14–15, k is incremented and GPUs generate candidate
k-itemsets from the (k− 1)-PFIs extracted on each GPU. PD
continues Lines 10–15 until no candidates are found.

PD minimizes data dependencies among GPUs by dis-
tributing candidates according to prefixes. However, the dis-
tribution by prefix may result in load imbalance. This is be-
cause the number of PFIs differs depending on a prefix. As a
result, some GPUs may need to compute many SPMFs and
other GPUs may compute a few SPMFs. Thus PD is not
desirable from the viewpoint of load balancing.

3.1.2 Round-Robin Distribution

In this section, we explain a method that distributes candi-
dates in a round-robin fashion. This method is called Round-
Robin Distribution (RRD) due to its candidate-distribution
scheme. While RRD has an almost identical algorithm to
PD, major differences lie in the distribution and loop phases.
In the distribution phase, candidates are allocated to GPUs
in a round-robin fashion, instead of using prefixes.

In the loop phase, there are two modifications. The first
modification is to generate candidates on the CPU rather
than GPUs, thereby balancing loads of GPUs at each iter-
ation. Although data transfer between CPU and GPUs oc-
curs at each iteration, only candidates are transferred and the

communication time is negligible in practice.
The second modification is for inclusion check to em-

ploy inclists of 1-itemsets rather than (k − 1)-itemsets. In
the case of PD, inclusion check of a k-itemset X can be per-
formed with inclists of (k− 1)-itemsets that are origins of X,
because X and the origins reside in the same GPU. On the
other hand, since RRD distributes candidates in round robin,
it is probable that the two origins and their inclists reside in
different GPUs. Hence, if a GPU tries to perform inclusion
check with inclists of (k − 1)-itemsets, the GPU may need
to access inclists in another GPU. Consequently data trans-
fer between GPUs, which should be avoided, occurs. To
address this issue, we utilize the inclists of 1-itemsets that
were already transferred in the initialization phase. In this
case, inclusion check of a k-itemset is performed as k − 1
bitwise AND operations among inclists of k 1-itemsets in-
cluded in X.

3.1.3 Count-Based Distribution

We describe another candidate-distribution scheme called
Count-Based Distribution (CBD). CBD assigns candidates
to GPUs by taking into account candidates’ cnt values. The
rationale is that the cnt values determine the computing time
of SPMFs [15], and the computing time of SPMFs domi-
nates the processing time of candidates on GPUs. Therefore
we can achieve load balancing if candidates are distributed
by considering cnt values. To this end, we firstly need to
estimate the computing times of SPMFs for particular cnt
values.

We can estimate the computing time of an SPMF for a
particular cnt value, if we know the computing time of an
SPMF for the next-higher power of two of the cnt value.
This is because the single-GPU method uses 2�log2 cnt(X)

transactions to compute the SPMF of an itemset X in or-
der to simplify the computation on a GPU. In this work,
we measure in advance the computing times of SPMFs for
power-of-two numbers of transactions. Once the computing
times are measured, this information can be used for any
dataset, because the computing times are determined only
by execution environments and are independent on datasets.

To achieve load balancing, we also need to know
the cnt values of candidates when assigning candidates
to GPUs. If k = 1, the values are computed before
the assignment. On the other hand, if k > 1, the cnt
values are not computed at the assigning time, and thus
need to be estimated. We here approximate cnt(X) as
minX′⊂X,|X′ |=k−1 cnt(X′). This value is an upper bound of the
actual cnt(X) value, and cnt(X) is expected to be less than
this upper bound. Although the difference between the up-
per bound and cnt(X) might become large, the difference is
negligible in practice, because estimating a computing time
requires only the next-higher power of two of cnt(X).

The algorithm of CBD is identical to RRD except for
its candidate-distribution scheme. CBD distributes candi-
dates to GPUs so that processing times on GPUs are as even
as possible. The algorithm of candidate distribution firstly

KOZAWA et al.: PROBABILISTIC FREQUENT ITEMSET MINING ON A GPU CLUSTER
783

Table 2 Characteristics of datasets.

Dataset Type Number of items Avg. size of transactions Number of transactions Density

Accidents real 468 33.8 340,183 7.2%
T25I10D500K synthetic 7558 25 499,960 0.33%

Kosarak real 41270 8.1 990,002 0.020%

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 2 Speedup of multi-GPU methods compared to the single GPU method on a single node.

initializes candidates and a processing time of each GPU to
empty set and zero, respectively. Then the algorithm iterates
the following two steps over candidates:

1. Find the GPU that has the minimum processing time.
2. Update candidates and processing time of the GPU.

Having finished the distribution, CBD extracts PFIs on
GPUs as in RRD.

3.2 A Method on a GPU Cluster

This section describes a method on a GPU cluster that is an
extension of single-node methods described in Sect. 3.1. For
the sake of simplicity, this paper assumes that all the nodes
hold an input database.

The basic idea is identical to the single-node methods:
Candidates are distributed among nodes and are processed
in parallel. The detailed algorithm is as follows. First, each
node extracts PFIs from candidates, which are evenly par-
titioned among nodes. Each node processes distinct can-
didates, and thus generates distinct PFIs. To generate next
candidates, the PFIs extracted on a node need to be broad-
casted to all other nodes.

Subsequently, candidate 2-itemsets are generated. Ei-
ther RRD or CBD is used to determine which node pro-
cesses specific candidates. The same candidate-distribution
scheme is used to further distribute the candidates among
GPUs within a node. Then, each node extracts 2-PFIs, and
broadcasts the PFIs to other nodes. The above steps con-
tinue with incrementing k by one until there is no candidate.
Since only PFIs need to be communicated among nodes, the
communication cost is very small and negligible.

4. Experiments

4.1 Experimental Setup

We implemented the proposed methods using CUDA [20],

OpenMP, and MPI. Experiments were conducted on a GPU
cluster of eight nodes, each of which has two CPUs and two
GPUs. The CPU is Intel Xeon E5645 with 6 cores running at
2.4 GHz. The GPU is NVIDIA Tesla M2090 with 512 cores
running at 1.3 GHz. The nodes are connected via InfiniBand
QDR (Quad Data Rate).

Table 2 summarizes the three datasets used in the ex-
periments. The density of a dataset is computed as the
average length of transactions divided by the number of
items. Accidents and Kosarak are real datasets that are
accessible on Frequent Itemset Mining Implementations
(FIMI) Repository.† While Accidents is the densest dataset,
Kosarak is the sparsest dataset. T25I10D500K is a synthetic
dataset, generated by a data generator.†† The default val-
ues of minsup on Accidents, T25I10D500K, and Kosarak
are 33%, 0.65%, and 0.2%, respectively. Existential proba-
bilities for the datasets are randomly drawn from a normal
distribution with mean 0.5 and variance 0.02. The value of
minprob is fixed to 0.5 for all the experiments.

4.2 Results on a Single Node

This section evaluates the three methods on a single node
(PD, RRD, and CBD). We first show the result of whole
algorithms and then analyze the several aspects of the al-
gorithms in detail. Figures 2(a)–2(c) show the speedups of
the three methods compared to the single-GPU method [9],
with varying minsup values. We measured execution time
as elapsed time from when the dataset is ready on CPU to
when all the result are collected to CPU. Note that the com-
munication time between CPU and GPU is included in the
execution time. From the charts, we can make the following
three observations:

1. The multi-GPU methods become increasingly faster
†http://fimi.cs.helsinki.fi/
††http://miles.cnuce.cnr.it/∼palmeri/datam/DCI/
datasets.php

784
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 3 Load imbalance factors between two GPUs.

than the single-GPU method, as the minsup value de-
creases.

2. RRD and CBD are generally faster than PD.
3. CBD outperforms RRD on Kosarak, while CBD and

RRD exhibit similar performance on Accidents and
T25I10D500K.

The first observation is due to the fact that small
minsup values make the number of candidates large, and
thus GPUs have much more workload to be done in parallel.
Although the number of candidates is small on Accidents,
Fig. 2(a) shows near-linear speedups. This is because the
cnt values become very large (nearly 250,000) on Accidents,
and hence the computation of SPMFs on Accidents is far
more computationally demanding than the computation on
T25I10D500K and Kosarak. As a result, the overall process-
ing time on GPUs is dominated by the time of computing
SPMFs, which can be performed in parallel. Note that the
RRD and CBD on Kosarak achieve super-linear speedups as
shown in Fig. 2(c). This is because candidate generation on
a CPU is faster than that on GPUs if the number of generated
candidates becomes very large.

The second observation results from the load imbal-
ance in PD. To verify this observation, we use a load im-
balance factor defined as the ratio of the longest processing
time of GPUs to the shortest processing time of GPUs. The
factor takes the value of 1 if the load is completely balanced,
and the factor increases as the load is more imbalanced. Fig-
ures 3(a)–3(c) show the load imbalance factors between two
GPUs as a function of minsup value. These charts reveal
that RRD and CBD achieve better load balancing than PD
on all the datasets. The jags of PD in Figs. 2(a) and 2(b)
are due to the skewness in the numbers of PFIs with differ-
ent prefixes. If one GPU processes candidates with prefixes
that generate many PFIs, the other GPU generates few PFIs.
Consequently the load imbalance occurs.

The third observation emerges from a characteristic of
datasets and the better capability of CBD for load balancing.
The characteristic is related to the dispersion of cnt values.
For instance, candidates in Kosarak have a wide range of cnt
values (2,000–600,000). Since CBD distributes candidates
by taking into account cnt values, CBD accommodates to
such variability, unlike RRD, which statically assigns can-

didates to GPUs. As a result, CBD achieves better load
balancing than RRD, and realizes higher speedup ratios, as
shown in Figs. 2(c) and 3(c). On the other hand, CBD and
RRD on Accidents and T25I10D500K exhibit similar per-
formance as shown in Figs. 2(a) and 2(b). This is because
the cnt values (i.e., processing times) of candidates in Ac-
cidents and T25I10D500K do not vary much. Thus it is
sufficient to distribute candidates in round robin in order to
achieve load balancing.

As a summary of this section, we demonstrate how
fast our methods run compared to the serial execution on
CPU. Figures 4(a)–4(c) shows the speedup values. On Ac-
cidents, RRD and CBD achieve the speedup of about 350;
on t25i10d500k, they are 90 times faster. The results on
these two datasets exhibit stable speedup with respect to
minsup values. On the other hand, the speedup on Kosarak
decreases as making the minsup value smaller. This is be-
cause when a minsup value is small, the number of candi-
dates with small cnt values increases and more time is spent
for the filtering step.

4.2.1 Time Breakdown at Each Iteration

This section further analyzes the most efficient method,
CBD, to clarify influences of each step of the algorithm on
overall execution time. Figures 5(a)–5(c) show the execu-
tion time of five steps at each iteration. The five steps con-
sists of candidate generation, inclusion check, pruning, fil-
tering, and computing SPMFs. The time of pruning at k = 1
is not shown because it is contained in inclusion check.

The most influential step is computing SPMFs on all
the three datasets. On Accidents, this step takes 90% of
overall execution time. When using T25I10D500K and
Kosarak, CBD spends about 60% of overall time. On these
datasets, more time is spent at inclusion check and pruning
compared to the case of Accidents. This is due to the larger
number of candidates and the larger sizes of datasets.

4.2.2 Larger Memory Footprint

In this section, we make memory footprint on GPU larger
by lowering minsup values on Kosarak, to see the advan-
tage of larger memory space with multiple GPUs. Figure 6

KOZAWA et al.: PROBABILISTIC FREQUENT ITEMSET MINING ON A GPU CLUSTER
785

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 4 Speedup of multi-GPU methods compared to the serial execution on CPU.

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 5 Execution time breakdown of CBD at each iteration.

Fig. 6 Execution time on Kosarak with small minsup values.

depicts the execution time of single-GPU method, RRD, and
CBD. Some points of the single-GPU method are not shown
because it does not work due to running out of memory. Ta-
ble 3 shows the sizes of inclists, which are the largest data
on GPUs.

The single-GPU method works only when the minsup
value is greater or equal to 0.18 %. This result and Table 3
indicate that the single-GPU method can deal with inclists
of 3.6 GB but cannot deal with inclists of 4.1 GB. On the
other hand, RRD and CBD work with the cases of smaller
minsup values. Since RRD and CBD uses two GPUs, they
can handle inclists of 7.0 GB (minsup = 0.14), which is
about 2 times of 3.6 GB. However, RRD and CBD are also
running out of memory when minsup = 0.13. In this case,
the size of inclists is 8.6 GB, which is more than two times
of 4.1 GB.

Table 3 The sizes of inclists on GPU with varying minsup values.

minsup (%) 0.13 0.14 0.15 0.16 0.17 0.18 0.19
Inclist size (GB) 8.6 7.0 5.5 4.7 4.1 3.6 3.0

4.2.3 CPU–GPU Communication Time

This section evaluates the transferred data size and commu-
nication time between CPU and GPU. Figures 7(a) and 7(b)
show the sizes of transferred data between CPU and GPU
on Accidents and Kosarak, respectively. Itemset in the fig-
ures include candidates and PFIs. We show only the result
of CBD because other methods show similar results. In ad-
dition, we omit the result on T25I10D500K because it is
similar to the result of Kosarak.

On Accidents, the array of probabilities is the largest
transferred data and itemsets are the smallest data. Inclists
lie in the middle of these two data. On the other hand, in-
clists become the largest transferred data on Kosarak. This
is because the number of 1-PFIs on Kosarak, which corre-
sponds to the number of inclists, is much larger than the
number of 1-PFIs on Accidents.

Figures 8(a) and 8(b) illustrate communication time be-
tween CPU and GPU on Accidents and Kosarak, respec-
tively. In general, it can be seen from the figures that the
communication time is proportional to the data size. One ex-
ception is Itemset on Accidents; the communication takes
almost the same time as inclists, although itemsets are small.
This is because itemsets are communicated multiple times,

786
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

(a) Accidents (b) Kosarak

Fig. 7 Transferred data size between CPU and GPU.

(a) Accidents (b) Kosarak

Fig. 8 Communication time between CPU and GPU.

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 9 The breakdown of execution time on the GPU cluster of eight nodes.

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 10 Load imbalance factors among all the GPUs on the GPU cluster.

while the inclists are transferred only once.

4.3 Results on the GPU Cluster

This section evaluates two variants of the method on
the GPU cluster with two candidate-distribution schemes,
namely RRD and CBD. Figures 9(a)–9(c) show executions
times of RRD and CBD and their breakdowns with vary-
ing number of nodes and the default values of minsup.
Load imbalance factors among all GPUs are also shown in
Figs. 10(a)–10(c). We measured execution time as elapsed
time between when all nodes finish loading data and when
a master node collects all PFIs. The execution time consists
of three parts: communication time among nodes (Comm),
execution time on GPU (GPU), and execution time on CPU
(CPU). More specifically, GPU comprises inclusion check for
k > 1, pruning for k > 1, filtering, and computing SPMFs.
CPU includes inclusion check and pruning for k = 1, candi-

date generation, and data transfer between CPU and GPU.
As mentioned in Sect. 3.2, we assume that all the nodes have
the complete dataset. Thus the dataset does not need to be
communicated among the nodes.

On Accidents, Figs. 9(a) and 10(a) show that CBD
achieves slightly better load balancing than RRD and a 7.1
times speedup on eight nodes. Since the computation of
SPMFs on Accidents is computationally expensive as men-
tioned in Sect. 4.2, GPUs can have much work processed in
parallel. Thus, CBD and RRD show high scalability.

Figure 9(b) shows that CBD and RRD result in the al-
most same performance on T25I10D500K, and the speedup
on eight nodes is 4.5. The methods on this dataset do not
achieve high scalability as in the case of Accidents. This
is because cnt values on T25I10D500K are small, and there
is little work processed by GPUs. Thus the execution time
on CPU, which is incurred by all nodes, dominates 10–25%
of overall execution time, and becomes a bottleneck. Mean-

KOZAWA et al.: PROBABILISTIC FREQUENT ITEMSET MINING ON A GPU CLUSTER
787

Table 4 Communicated data size among nodes.

(a) Accidents

minsup (%) 31 32 33 34 35 36 37 38 39
Transferred data size (KB) 7.8 5.8 4.2 3.0 2.2 1.8 1.3 1.0 0.69

(b) T25I10D500K

minsup (%) 0.65 0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85
Transferred data size (KB) 5.4 2.8 1.5 0.99 0.53 0.24 0.13 0.097 0.068

(c) Kosarak

minsup (%) 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Transferred data size (KB) 9.8 6.1 4.2 2.9 2.1 1.7 1.4 1.1 0.94

(a) Accidents (b) T25I10D500K (c) Kosarak

Fig. 11 Communication time among nodes.

while, the fact that CBD and RRD have similar performance
is due to the little variability of cnt values on T25I10D500K,
as discussed in Sect. 4.2.

On Kosarak, CBD achieves much better load balanc-
ing than RRD (Fig. 10(c)), and shows a 4.9 times speedup
on eight nodes. Since candidates have a wide range of cnt
values on this dataset, RRD cannot balance the load among
nodes, while CBD accommodates to the variability. On av-
erage, CBD is 1.3 times faster than RRD on this dataset.

Figure 11 focuses on the communication time among
nodes. Table 4 summarizes the sizes of communicated data
among nodes. Since the proposed methods only commu-
nicate PFIs, their sizes are very small and not so different
among datasets (Table 4). However, the communication
time can vary largely. For example, the communication on
Accidents takes 10 times longer than the communication on
T25I10D500K (Figs. 11(a) and 11(b)). This is because the
communication time include the synchronization time. In
other words, each node needs to wait until all the nodes fin-
ish to find PFIs. That is why the communication takes much
longer on Accidents, where the computation of SPMFs is
very expensive. For the same reason, on average, the com-
munication of CBD is shorter than that of RRD.

5. Related Work

This section reviews related work on frequent itemset min-
ing and probabilistic frequent itemset mining.

Frequent itemset mining. The problem of association
rule mining was firstly introduced by Agrawal et al. [3]. As-

sociation rule mining consists of two steps: frequent itemset
mining and finding association rules. Since frequent itemset
mining is more computationally intensive, many algorithms
have been proposed to accelerate the mining. Among the
algorithms, there are two major algorithms, namely Apri-
ori [4] and FP-growth [8].

Parallelization of these algorithms has been widely
studied. In the late 1990s, distributed-memory systems were
mainly used as the underlying architecture. Zaki summa-
rized such algorithms [19]. More recently, Li et al. [10] de-
signed a parallel algorithm of FP-growth on a massive com-
puting environment using MapReduce. Özkural et al. [13]
introduced a data distribution scheme based on a graph-
theoretic approach.

Frequent itemset mining on GPUs has been also stud-
ied [5], [7], [14], [16]. Fang et al. [7] proposed two ap-
proaches, GPU-based and CPU-GPU hybrid methods. The
GPU-based method utilizes bitstrings and bit operations for
fast support counting, running entirely on a GPU. The hy-
brid method adopts the trie structure on a CPU and counts
supports on a GPU. Teodoro et al. [16] parallelized the
Tree Projection algorithm [1] on a GPU as well as a multi-
core CPU. Amossen et al. [5] presented a novel data layout
BatMap to represent bitstrings. This layout is well suited to
parallel processing and compact even for sparse data. Then
they make use of BatMap to accelerate frequent itemset min-
ing. Silvestri et al. [14] proposed a GPU version of a state-
of-the-art algorithm DCI [11].

Probabilistic frequent itemset mining. While the
above-mentioned parallel algorithms work well for the con-

788
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.4 APRIL 2014

ventional certain transaction databases, they cannot ef-
fectively process frequent itemset mining from uncertain
databases, which gains increasing importance in order to
handle data uncertainty. There is much work for modeling,
querying, and mining such uncertain data (see a survey by
Aggarwal and Yu [2] for details and more information).

To mine frequent itemsets with taking into account the
uncertainty, a number of algorithms have been proposed.
Bernecker et al. [6] proposed an algorithm to find probabilis-
tic frequent itemsets under the attribute-uncertainty model,
where existential probabilities are associated with items.
On the other hand, Sun et al. [15] considered the tuple-
uncertainty model, where existential probabilities are asso-
ciated with transactions. Recently, Tong et al. [17] imple-
mented existing representative algorithms and test their per-
formance with uniform measures fairly.

Several attempts to accelerate these algorithms also ex-
ist. Wang et al. [18] developed an algorithm to approximate
the probability that determines whether itemsets are PFIs or
not. Our previous work [9] presented an algorithm using a
single GPU based on the work by Sun et al. [15]. We have
extended this method to use multiple GPUs in this paper.

6. Conclusions

This paper has proposed methods of probabilistic frequent
itemset mining using multiple GPUs. The methods run in
parallel by distributing candidates among GPUs. The pro-
posed method PD assigns candidates to GPUs according
to their prefixes. Then we have described RRD and CBD,
which take into consideration load balancing. RRD dis-
tributes candidates to GPUs in a round-robin fashion, while
CBD uses the cnt values of candidates to achieve better load
balancing. We have also presented methods on a GPU clus-
ter by extending RRD and CBD. Experiments on a single
node showed that CBD achieves the best load balancing and
results in the fastest algorithm. Experiments on a GPU clus-
ter of eight nodes revealed that our proposed methods are
effective if there is sufficient workload to be processed on
GPUs. Future work involves developing a CPU-GPU hy-
brid method that utilizes CPUs and GPUs simultaneously.
In addition, more sophisticated multi-node methods should
be considered.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 24240015 and HA-PACS Project for advanced interdis-
ciplinary computational sciences by exa-scale computing
technology.

References

[1] R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad, “A tree projection
algorithm for generation of frequent item sets,” J. Parallel Distrib.
Comput., vol.61, no.3, pp.350–371, March 2001.

[2] C.C. Aggarwal and P.S. Yu, “A survey of uncertain data algorithms
and applications,” IEEE Trans. Knowl. Data Eng., vol.21, no.5,

pp.609–623, May 2009.
[3] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules

between sets of items in large databases,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD), pp.207–216, 1993.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules,” Proc. 20th Int’l Conf. Very Large Data Bases (VLDB),
pp.487–499, 1994.

[5] R.R. Amossen and R. Pagh, “A new data layout for set intersection
on GPUs,” Proc. IEEE Int’l Parallel & Distributed Processing Symp.
(IPDPS), pp.698–708, 2011.

[6] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle,
“Probabilistic frequent itemset mining in uncertain databases,” Proc.
15th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD), pp.119–128, 2009.

[7] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo, “Frequent itemset
mining on graphics processors,” Proc. Fifth Int’l Workshop on Data
Management on New Hardware (DaMoN), pp.34–42, 2009.

[8] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candi-
date generation,” Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD), pp.1–12, 2000.

[9] Y. Kozawa, T. Amagasa, and H. Kitagawa, “GPU acceleration of
probabilistic frequent itemset mining from uncertain databases,”
Proc. 21st Int’l Conf. Information and Knowledge Management
(CIKM), pp.892–901, 2012.

[10] H. Li, Y. Wang, D. Zhang, M. Zhang, and E.Y. Chang, “PFP: Par-
allel FP-growth for query recommendation,” Proc. ACM Conf. Rec-
ommender Systems (RecSys), pp.107–114, 2008.

[11] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri, “Adaptive and
resource-aware mining of frequent sets,” Proc. IEEE Int’l Conf. Data
Mining (ICDM), pp.338–345, 2002.

[12] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C.
Phillips, “GPU computing,” Proc. IEEE, vol.96, no.5, pp.879–899,
May 2008.

[13] E. Ozkural, B. Ucar, and C. Aykanat, “Parallel frequent item set
mining with selective item replication,” IEEE Trans. Parallel Distrib.
Syst., vol.22, no.10, pp.1632–1640, Oct. 2011.

[14] C. Silvestri and S. Orlando, “gpuDCI: Exploiting GPUs in frequent
itemset mining,” Proc. 20th Euromicro Int’l Conf. Parallel, Dis-
tributed and Network-based Processing (PDP), pp.416–425, 2012.

[15] L. Sun, R. Cheng, D.W. Cheung, and J. Cheng, “Mining uncertain
data with probabilistic guarantees,” Proc. 16th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (KDD), pp.273–282,
2010.

[16] G. Teodoro, N. Mariano, W. Meira, Jr., and R. Ferreira, “Tree
Projection-based Frequent Itemset Mining on Multicore CPUs and
GPUs,” Proc. 22nd Int’l Symp. Computer Architecture and High
Performance Computing (SBAC-PAD), pp.47–54, 2010.

[17] Y. Tong, L. Chen, Y. Cheng, and P.S. Yu, “Mining frequent item-
sets over uncertain databases,” Proc. VLDB Endow., vol.5, no.11,
pp.1650–1661, July 2012.

[18] L. Wang, D.W. Cheung, R. Cheng, S.D. Lee, and X.S. Yang, “Ef-
ficient mining of frequent item sets on large uncertain databases,”
IEEE Trans. Knowl. Data Eng., vol.24, no.12, pp.2170–2183, Dec.
2012.

[19] M.J. Zaki, “Parallel and distributed association mining: A survey,”
IEEE Concurrency, vol.7, no.4, pp.14–25, Oct. 1999.

[20] NVIDIA, CUDA C Programming Guide, Oct. 2012.

KOZAWA et al.: PROBABILISTIC FREQUENT ITEMSET MINING ON A GPU CLUSTER
789

Yusuke Kozawa received the B.Sc. and
M.Eng. degrees from University of Tsukuba,
Japan, in 2011 and 2013, respectively. He is
currently a Ph.D. student at Graduate School of
Systems and Information Engineering, Univer-
sity of Tsukuba. His research interests include
databases, data mining, and parallel computing.

Toshiyuki Amagasa received B.E., M.E.,
and Ph.D degrees from the Department of Com-
puter Science, Gunma University in 1994, 1996,
and 1999, respectively. Currently, he is an as-
sociate professor at the Division of Information
Engineering, Faculty of Engineering, Informa-
tion and Systems, University of Tsukuba. His
research interests cover database systems, data
mining, and database application in scientific
domains. He is a senior member of IEICE and
IEEE, and a member of DBSJ, IPSJ, and ACM.

Hiroyuki Kitagawa received the B.Sc. de-
gree in physics and the M.Sc. and Dr.Sc. de-
grees in computer science, all from the Univer-
sity of Tokyo, in 1978, 1980, and 1987, respec-
tively. He is currently a full professor at Faculty
of Engineering, Information and Systems and
at Center for Computational Sciences, Univer-
sity of Tsukuba. His research interests include
databases, data integration, data mining, stream
processing, information retrieval, and scientific
databases. He is Vice President of DBSJ and a

Fellow of IPSJ and IEICE. He is a member of ACM, IEEE Computer So-
ciety, and JSSST.

