The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CCN (content-centric networking)(2hit)

1-2hit
  • A Fast Packet Loss Detection Mechanism for Content-Centric Networking

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1842-1852

    In this paper, we propose a packet loss detection mechanism called Interest ACKnowledgement (ACK). Interest ACK provides information on the history of successful Interest packet receptions at a repository (i.e., content provider); this information is conveyed to the corresponding entity (i.e., content consumer) via the header of Data packets. Interest ACKs enable the entity to quickly and accurately detect Interest and Data packet losses in the network. We conduct simulations to investigate the effectiveness of Interest ACKs under several scenarios. Our results show that Interest ACKs are effective for improving the adaptability and stability of CCN with window-based flow control and that packet losses at the repository can be reduced by 10%-20%. Moreover, by extending Interest ACK, we propose a lossy link detection mechanism called LLD-IA (Lossy Link Detection with Interest ACKs), which is a mechanism for an entity to estimate the link where the packet was discarded in a network. Also, we show that LLD-IA can effectively detect links where packets were discarded under moderate packet loss ratios through simulation.

  • Performance Analysis of Content-Centric Networking on an Arbitrary Network Topology

    Ryo NAKAMURA  Hiroyuki OHSAKI  

     
    PAPER

      Pubricized:
    2017/07/05
      Vol:
    E101-B No:1
      Page(s):
    24-34

    In this paper, we use the MCA (Multi-Cache Approximation) algorithm to numerically determine cache hit probability in a multi-cache network. We then analytically obtain performance metrics for Content-Centric networking (CCN). Our analytical model contains multiple routers, multiple repositories (e.g., storage servers), and multiple entities (e.g., clients). We obtain three performance metrics: content delivery delay (i.e., the average time required for an entity to retrieve a content through a neighboring router), throughput (i.e., number of contents delivered from an entity per unit of time), and availability (i.e., probability that an entity can successfully retrieve a content from a network). Through several numerical examples, we investigate how network topology affects the performance of CCN. A notable finding is that content caching becomes more beneficial in terms of content delivery time and availability (resp., throughput) as distance between the entity and the requesting repository narrows (resp., widens).