The search functionality is under construction.

Keyword Search Result

[Keyword] base station (BS) sleeping(2hit)

1-2hit
  • Traffic-Aware Network Planning and Green Operation with BS Sleeping and Cell Zooming

    Shan ZHANG  Yiqun WU  Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Network

      Vol:
    E97-B No:11
      Page(s):
    2337-2346

    The traffic load of cellular networks varies in both time and spatial domains, causing many base stations (BS) to be under-utilized. Assisted by cell zooming, dynamic BS sleep control is considered as an effective way to improve energy efficiency during low traffic hours. Therefore, how densely the BSs should be deployed with cell zooming and BS sleeping is an important issue. In this paper, we explore the energy-optimal cellular network planning problem with dynamic BS sleeping and cell zooming for the cases in which traffic is uniformly distributed in space but time-varying. To guarantee the quality of multi-class services, an approximation method based on Erlang formula is proposed. Extensive simulations under our predefined scenarios show that about half of energy consumption can be saved through dynamic BS sleeping and power control. Surprisingly, the energy-optimal BS density we obtained is larger than the one without considering BS sleeping. In other words, deploying more BSs may help to save energy if dynamic BS sleeping is executed.

  • A Dynamic Programming Approach for Base Station Sleeping in Cellular Networks

    Jie GONG  Sheng ZHOU  Zhisheng NIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:2
      Page(s):
    551-562

    The energy consumption of the information and communication technology (ICT) industry, which has become a serious problem, is mostly due to the network infrastructure rather than the mobile terminals. In this paper, we focus on reducing the energy consumption of base stations (BSs) by adjusting their working modes (active or sleep). Specifically, the objective is to minimize the energy consumption while satisfying quality of service (QoS, e.g., blocking probability) requirement and, at the same time, avoiding frequent mode switching to reduce signaling and delay overhead. The problem is modeled as a dynamic programming (DP) problem, which is NP-hard in general. Based on cooperation among neighboring BSs, a low-complexity algorithm is proposed to reduce the size of state space as well as that of action space. Simulations demonstrate that, with the proposed algorithm, the active BS pattern well meets the time variation and the non-uniform spatial distribution of system traffic. Moreover, the tradeoff between the energy saving from BS sleeping and the cost of switching is well balanced by the proposed scheme.