The search functionality is under construction.

Keyword Search Result

[Keyword] integer linear programming (ILP)(2hit)

1-2hit
  • SDNRCFII: An SDN-Based Reliable Communication Framework for Industrial Internet

    Hequn LI  Die LIU  Jiaxi LU  Hai ZHAO  Jiuqiang XU  

     
    PAPER-Network

      Pubricized:
    2022/05/26
      Vol:
    E105-B No:12
      Page(s):
    1508-1518

    Industrial networks need to provide reliable communication services, usually in a redundant transmission (RT) manner. In the past few years, several device-redundancy-based, layer 2 solutions have been proposed. However, with the evolution of industrial networks to the Industrial Internet, these methods can no longer work properly in the non-redundancy, layer 3 environments. In this paper, an SDN-based reliable communication framework is proposed for the Industrial Internet. It can provide reliable communication guarantees for mission-critical applications while servicing non-critical applications in a best-effort transmission manner. Specifically, it first implements an RT-based reliable communication method using the Industrial Internet's link-redundancy feature. Next, it presents a redundant synchronization mechanism to prevent end systems from receiving duplicate data. Finally, to maximize the number of critical flows in it (an NP-hard problem), two ILP-based routing & scheduling algorithms are also put forward. These two algorithms are optimal (Scheduling with Unconstrained Routing, SUR) and suboptimal (Scheduling with Minimum length Routing, SMR). Numerous simulations are conducted to evaluate its effectiveness. The results show that it can provide reliable, duplicate-free services to end systems. Its reliable communication method performs better than the conventional best-effort transmission method in terms of packet delivery success ratio in layer 3 networks. In addition, its scheduling algorithm, SMR, performs well on the experimental topologies (with average quality of 93% when compared to SUR), and the time overhead is acceptable.

  • ILP-Based Bitwidth-Aware Subexpression Sharing for Area Minimization in Multiple Constant Multiplication

    Bu-Ching LIN  Juinn-Dar HUANG  Jing-Yang JOU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:4
      Page(s):
    931-939

    The notion of multiple constant multiplication (MCM) is extensively adopted in digital signal processing (DSP) applications such as finite impulse filter (FIR) designs. A set of adders is utilized to replace regular multipliers for the multiplications between input data and constant filter coefficients. Though many algorithms have been proposed to reduce the total number of adders in an MCM block for area minimization, they do not consider the actual bitwidth of each adder, which may not estimate the hardware cost well enough. Therefore, in this article we propose a bitwidth-aware MCM optimization algorithm that focuses on minimizing the total number of adder bits rather than the adder count. It first builds a subexpression graph based on the given coefficients, derives a set of constraints for adder bitwidth minimization, and then optimally solves the problem through integer linear programming (ILP). Experimental results show that the proposed algorithm can effectively reduce the required adder bit count and outperforms the existing state-of-the-art techniques.