The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] maximum likelihood linear regression (MLLR)(3hit)

1-3hit
  • Smoothing Method for Improved Minimum Phone Error Linear Regression

    Yaohui QI  Fuping PAN  Fengpei GE  Qingwei ZHAO  Yonghong YAN  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:8
      Page(s):
    2105-2113

    A smoothing method for minimum phone error linear regression (MPELR) is proposed in this paper. We show that the objective function for minimum phone error (MPE) can be combined with a prior mean distribution. When the prior mean distribution is based on maximum likelihood (ML) estimates, the proposed method is the same as the previous smoothing technique for MPELR. Instead of ML estimates, maximum a posteriori (MAP) parameter estimate is used to define the mode of prior mean distribution to improve the performance of MPELR. Experiments on a large vocabulary speech recognition task show that the proposed method can obtain 8.4% relative reduction in word error rate when the amount of data is limited, while retaining the same asymptotic performance as conventional MPELR. When compared with discriminative maximum a posteriori linear regression (DMAPLR), the proposed method shows improvement except for the case of limited adaptation data for supervised adaptation.

  • Average-Voice-Based Speech Synthesis Using HSMM-Based Speaker Adaptation and Adaptive Training

    Junichi YAMAGISHI  Takao KOBAYASHI  

     
    PAPER-Speech and Hearing

      Vol:
    E90-D No:2
      Page(s):
    533-543

    In speaker adaptation for speech synthesis, it is desirable to convert both voice characteristics and prosodic features such as F0 and phone duration. For simultaneous adaptation of spectrum, F0 and phone duration within the HMM framework, we need to transform not only the state output distributions corresponding to spectrum and F0 but also the duration distributions corresponding to phone duration. However, it is not straightforward to adapt the state duration because the original HMM does not have explicit duration distributions. Therefore, we utilize the framework of the hidden semi-Markov model (HSMM), which is an HMM having explicit state duration distributions, and we apply an HSMM-based model adaptation algorithm to simultaneously transform both the state output and state duration distributions. Furthermore, we propose an HSMM-based adaptive training algorithm to simultaneously normalize the state output and state duration distributions of the average voice model. We incorporate these techniques into our HSMM-based speech synthesis system, and show their effectiveness from the results of subjective and objective evaluation tests.

  • A Style Adaptation Technique for Speech Synthesis Using HSMM and Suprasegmental Features

    Makoto TACHIBANA  Junichi YAMAGISHI  Takashi MASUKO  Takao KOBAYASHI  

     
    PAPER-Speech Synthesis

      Vol:
    E89-D No:3
      Page(s):
    1092-1099

    This paper proposes a technique for synthesizing speech with a desired speaking style and/or emotional expression, based on model adaptation in an HMM-based speech synthesis framework. Speaking styles and emotional expressions are characterized by many segmental and suprasegmental features in both spectral and prosodic features. Therefore, it is essential to take account of these features in the model adaptation. The proposed technique called style adaptation, deals with this issue. Firstly, the maximum likelihood linear regression (MLLR) algorithm, based on a framework of hidden semi-Markov model (HSMM) is presented to provide a mathematically rigorous and robust adaptation of state duration and to adapt both the spectral and prosodic features. Then, a novel tying method for the regression matrices of the MLLR algorithm is also presented to allow the incorporation of both the segmental and suprasegmental speech features into the style adaptation. The proposed tying method uses regression class trees with contextual information. From the results of several subjective tests, we show that these techniques can perform style adaptation while maintaining naturalness of the synthetic speech.