The search functionality is under construction.

Keyword Search Result

[Keyword] non-line-of-sight (NLOS)(6hit)

1-6hit
  • Hybrid TOA/AOA Geometrical Positioning Schemes Using Linear Lines of Position for Mobile Location

    Chien-Sheng CHEN  

     
    LETTER

      Vol:
    E98-A No:8
      Page(s):
    1676-1679

    To achieve more accurate measurements of the mobile station (MS) location, it is possible to integrate many kinds of measurements. In this paper we proposed several hybrid methods that utilized time of arrival (TOA) at seven base stations (BSs) and the angle of arrival (AOA) information at the serving BS to give location estimation of the MS in non-line-of-sight (NLOS) environments. Rather than applying the nonlinear circular lines of position (LOP), the proposed methods are easier by using linear LOP to determine the MS. In addition, the proposed methods can mitigate the NLOS effect, simply by applying the weighted sum of the intersections between different linear LOP and the AOA line, without requiring priori knowledge of NLOS error statistics. Simulation results show that the proposed methods can always yield superior performance in comparison with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) and the previous proposed methods employing circular LOP.

  • An Efficient TOA-Based Localization Scheme Based on BS Selection in Wireless Sensor Networks

    Seungryeol GO  Jong-Wha CHONG  

     
    PAPER-Sensing

      Vol:
    E97-B No:11
      Page(s):
    2560-2569

    In this paper, we present an efficient time-of-arrival (TOA)-based localization method for wireless sensor networks. The goal of a localization system is to accurately estimate the geographic location of a wireless device. In real wireless sensor networks, accurately estimating mobile device location is difficult because of the presence of various errors. Therefore, localization methods have been studied in recent years. In indoor environments, the accuracy of wireless localization systems is affected by non-line-of-sight (NLOS) errors. The presence of NLOS errors degrades the performance of wireless localization systems. In order to effectively estimate the location of the mobile device, NLOS errors should be recognized and mitigated in indoor environments. In the TOA-based ranging method, the distance between the two wireless devices can be computed by multiplying a signal's propagation delay time by the speed of light. TOA-based localization measures the distance between the mobile station (MS) and three or more base stations (BSs). However, each of the NLOS errors of the measured distance between the i-th BS and the MS is different due to dissimilar obstacles in the direct signal path between the two nodes. In order to accurately estimate the location in a TOA-based localization system, an optimized localization algorithm that selects three measured distances with fewer NLOS errors is necessary. We present an efficient TOA-based localization scheme that combines three selected BSs in wireless sensor networks. This localization scheme yields improved localization performance in wireless sensor networks. In this paper, performance tests are performed, and the simulation results are verified through comparisons between various localization methods and the proposed method. As a result, proposed localization scheme using BS selection achieves remarkably better localization performance than the conventional methods. This is verified by experiments in real environments, and demonstrates a performance analysis in NLOS environments. By using BS selection, we will show an efficient and effective TOA-based localization scheme in wireless sensor networks.

  • Geometrical Positioning Schemes Based on Hybrid Lines of Position

    Chien-Sheng CHEN  Jium-Ming LIN  Wen-Hsiung LIU  Ching-Lung CHI  

     
    LETTER-Signal Processing

      Vol:
    E95-D No:5
      Page(s):
    1336-1340

    To achieve more accurate measurements of the mobile station (MS) location, it is possible to integrate many kinds of measurements. In this paper we proposed several simpler methods that utilized time of arrival (TOA) at three base stations (BSs) and the angle of arrival (AOA) information at the serving BS to give location estimation of the MS in non-line-of-sight (NLOS) environments. From the viewpoint of geometric approach, for each a TOA value measured at any BS, one can generate a circle. Rather than applying the nonlinear circular lines of position (LOP), the proposed methods are much easier by using linear LOP to determine the MS. Numerical results demonstrate that the calculation time of using linear LOP is much less than employing circular LOP. Although the location precision of using linear LOP is only reduced slightly. However, the proposed efficient methods by using linear LOP can still provide precise solution of MS location and reduce the computational effort greatly. In addition, the proposed methods with less effort can mitigate the NLOS effect, simply by applying the weighted sum of the intersections between different linear LOP and the AOA line, without requiring priori knowledge of NLOS error statistics. Simulation results show that the proposed methods can always yield superior performance in comparison with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

  • MS Location Estimation with Genetic Algorithm

    Chien-Sheng CHEN  Jium-Ming LIN  Wen-Hsiung LIU  Ching-Lung CHI  

     
    PAPER-ITS

      Vol:
    E95-A No:1
      Page(s):
    305-312

    Intelligent transportation system (ITS) makes use of vehicle position to decrease the heavy traffic and improve service reliability of public transportation system. Many existing systems, such as global positioning system (GPS) and cellular communication systems, can be used to estimate vehicle location. The objective of wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. The non-line-of-sight (NLOS) problem is the most crucial factor that it causes large measured error. In this paper, we present a novel positioning algorithm based on genetic algorithm (GA) to locate MS when three BSs are available for location purpose. Recently, GA are widely used as many various optimization problems. The proposed algorithm utilizes the intersections of three time of arrival (TOA) circles based on GA to estimate the MS location. The simulation results show that the proposed algorithms can really improve the location accuracy, even under severe NLOS conditions.

  • Mobile Location Estimation in Wireless Communication Systems

    Chien-Sheng CHEN  Szu-Lin SU  Yih-Fang HUANG  

     
    LETTER

      Vol:
    E94-B No:3
      Page(s):
    690-693

    The objective of wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When signals are propagated through non-line-of-sight (NLOS) paths, the measurements at the base stations (BSs) contain large errors which result in poor detectability of an MS by the surrounding BSs. In those situations, it is necessary to integrate all available heterogeneous measurements to improve location accuracy. This paper presents hybrid methods that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to obtain a location estimate for the MS. The proposed methods mitigate the NLOS effect by using the weighted sum of the intersections between three TOA circles and the AOA line without requiring the a priori knowledge of NLOS error statistics. Numerical results show that all positioning methods offer improved estimation accuracy over those which rely on the two circles and two lines. The proposed methods always achieve better location accuracy than the Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP) do, regardless of the NLOS error statistics.

  • Estimation of NLOS Propagation-Delay Error Improves Hybrid Mobile Station Location

    Wuk KIM  Jang-Gyu LEE  Gyu-In JEE  

     
    LETTER

      Vol:
    E85-A No:12
      Page(s):
    2877-2880

    A hybrid location system for a mobile station consists of a wireless-assisted GPS and a kind of cellular signals. This letter presents a location estimator improving the performance of the hybrid mobile station location for all terrain environments including inside or between buildings. An estimation structure eliminating non-line-of-sight propagation-delay error effectively improves location accuracy of the hybrid location system.