The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time-division multiplexing (TDM)(2hit)

1-2hit
  • Raman-Based 10.66 Gb/s Bidirectional TDM over Long-Reach WDM Hybrid PON

    Hsin-Min WANG  Hidenori TAGA  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:12
      Page(s):
    3911-3914

    In this paper, we demonstrate a 10.66 Gb/s bidirectional TDM over long-reach WDM hybrid PON supported by distributed Raman amplification, and the power budget margin is measured to be 15 dB for downstream transmission and 12 dB for upstream transmission, with dual Raman pump power of 300 mW.

  • Time-Division Multiplexing Realizations of Multiple-Output Functions Based on Shared Multi-Terminal Multiple-Valued Decision Diagrams

    Hafiz Md. HASAN BABU  Tsutomu SASAO  

     
    PAPER-Logic Design

      Vol:
    E82-D No:5
      Page(s):
    925-932

    This paper considers methods to design multiple-output networks based on decision diagrams (DDs). TDM (time-division multiplexing) systems transmit several signals on a single line. These methods reduce: 1) hardware; 2) logic levels; and 3) pins. In the TDM realizations, we consider three types of DDs: shared binary decision digrams (SBDDs), shared multiple-valued decision diagrams (SMDDs), and shared multi-terminal multiple-valued decision diagrams (SMTMDDs). In the network, each non-terminal node of a DD is realized by a multiplexer (MUX). We propose heuristic algorithms to derive SMTMDDs from SBDDs. We compare the number of non-terminal nodes in SBDDs, SMDDs, and SMTMDDs. For nrm n, log n, and for many other benchmark functions, SMTMDD-based realizations are more economical than other ones, where nrm n is a (2n)-input (n1)-output function computing (X2+Y2)+0.5, log n is an n-input n-output function computing (2n1)log(x1)/nlog2, and a denotes the largest integer not greater than a.