The search functionality is under construction.

Keyword Search Result

[Keyword] zero-suppressed binary decision diagrams (BDD)(2hit)

1-2hit
  • Manipulation of Large-Scale Polynomials Using BMDs

    Dror ROTTER  Kiyoharu HAMAGUCHI  Shin-ichi MINATO  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1774-1781

    Minato has proposed canonical representation for polynomial functions using zero-suppressed binary decision diagrams (ZBDDs). In this paper, we extend binary moment diagrams (BMDs) proposed by Bryant and Chen to handle variables with degrees higher than l. The experimental results show that this approach is much more efficient than the previous ZBDDs' approach. The proposed approach is expected to be useful for various problems, in particular, for computer algebra.

  • Computational Power of Nondeterministic Ordered Binary Decision Diagrams and Their Subclasses

    Kazuyoshi TAKAGI  Koyo NITTA  Hironori BOUNO  Yasuhiko TAKENAGA  Shuzo YAJIMA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    663-669

    Ordered Binary Decision Diagrams (OBDDs) are graph-based representations of Boolean functions which are widely used because of their good properties. In this paper, we introduce nondeterministic OBDDs (NOBDDs) and their restricted forms, and evaluate their expressive power. In some applications of OBDDs, canonicity, which is one of the good properties of OBDDs, is not necessary. In such cases, we can reduce the required amount of storage by using OBDDs in some non-canonical form. A class of NOBDDs can be used as a non-canonical form of OBDDs. In this paper, we focus on two particular methods which can be regarded as using restricted forms of NOBDDs. Our aim is to show how the size of OBDDs can be reduced in such forms from theoretical point of view. Firstly, we consider a method to solve satisfiability problem of combinational circuits using the structure of circuits as a key to reduce the NOBDD size. We show that the NOBDD size is related to the cutwidth of circuits. Secondly, we analyze methods that use OBDDs to represent Boolean functions as sets of product terms. We show that the class of functions treated feasibly in this representation strictly contains that in OBDDs and contained by that in NOBDDs.