1-1hit |
Aamir Saeed MALIK Tae-Sun CHOI
A classification method is presented for differentiating honeycombed High Resolution Computed Tomographic (HRCT) images from normal HRCT images. For successful classification of honeycombed HRCT images, a complete set of methods and algorithms is described from segmentation to extraction to feature selection to classification. Wavelet energy is selected as a feature for classification using K-means clustering. Test data of 20 patients are used to validate the method.