The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Akihiko KASAGI(2hit)

1-2hit
  • Offline Permutation on the CUDA-enabled GPU

    Akihiko KASAGI  Koji NAKANO  Yasuaki ITO  

     
    PAPER-GPU

      Vol:
    E97-D No:12
      Page(s):
    3052-3062

    The Hierarchical Memory Machine (HMM) is a theoretical parallel computing model that captures the essence of computation on CUDA-enabled GPUs. The offline permutation is a task to copy numbers stored in an array a of size n to an array b of the same size along a permutation P given in advance. A conventional algorithm can complete the offline permutation by executing b[p[i]] ← a[i] for all i in parallel, where an array p stores the permutation P. We first present that the conventional algorithm runs $D_w(P)+2{nover w}+3L-3$ time units using n threads on the HMM with width w and latency L, where Dw(P) is the distribution of P. We next show that important regular permutations including transpose, shuffle, and bit-reversal permutations run $2{nover w}+2{nover kw}+2L-2$ time units on the HMM with k DMMs. We have implemented permutation algorithms for these regular permutations on GeForce GTX 680 GPU. The experimental results show that these algorithms run much faster than the conventional algorithm. We also present an offline permutation algorithm for any permutation running in $16{nover w}+16{nover kw}+16L-16$ time units on the HMM with k DMMs. Quite surprisingly, our offline permutation algorithm on the GPU achieves better performance than the conventional algorithm in random permutation, although the running time has a large constant factor. We can say that the experimental results provide a good example of GPU computation showing that a complicated but ingenious implementation with a larger constant factor in computing time can outperform a much simpler conventional algorithm.

  • Offline Permutation Algorithms on the Discrete Memory Machine with Performance Evaluation on the GPU

    Akihiko KASAGI  Koji NAKANO  Yasuaki ITO  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2617-2625

    The Discrete Memory Machine (DMM) is a theoretical parallel computing model that captures the essence of the shared memory access of GPUs. Bank conflicts should be avoided for maximizing the bandwidth of the shared memory access. Offline permutation of an array is a task to copy all elements in array a into array b along a permutation given in advance. The main contribution of this paper is to implement a conflict-free permutation algorithm on the DMM in a GPU. We have also implemented straightforward permutation algorithms on the GPU. The experimental results for 1024 double (64-bit) numbers on NVIDIA GeForce GTX-680 show that the straightforward permutation algorithm takes 247.8 ns for the random permutation and 1684ns for the worst permutation that involves the maximum bank conflicts. Our conflict-free permutation algorithm runs in 167ns for any permutation including the random permutation and the worst permutation, although it performs more memory accesses. It follows that our conflict-free permutation is 1.48 times faster for the random permutation and 10.0 times faster for the worst permutation.