1-1hit |
Akira NAGAMI Hirofumi INADA Takaya MIYANO
A generalized radial basis function network consisting of (1 + cosh x)-1 as the basis function of the same class as Gaussian functions is investigated in terms of the feasibility of analog-hardware implementation. A simple way of hardware-implementing (1 + cosh x)-1 is proposed to generate the exact input-output response curve on an analog circuit constructed with bipolar transistors. To demonstrate that networks consisting of the basis function proposed actually work, the networks are applied to numerical experiments of forecasting chaotic time series contaminated with observational random noise. Stochastic gradient descent is used as learning rule. The networks are capable of learning and making short-term forecasts about the dynamic behavior of the time series with comparable performance to Gaussian radial basis function networks.