The search functionality is under construction.

Author Search Result

[Author] Anto Satriyo NUGROHO(3hit)

1-3hit
  • CombNET-III with Nonlinear Gating Network and Its Application in Large-Scale Classification Problems

    Mauricio KUGLER  Susumu KUROYANAGI  Anto Satriyo NUGROHO  Akira IWATA  

     
    PAPER-Pattern Recognition

      Vol:
    E91-D No:2
      Page(s):
    286-295

    Modern applications of pattern recognition generate very large amounts of data, which require large computational effort to process. However, the majority of the methods intended for large-scale problems aim to merely adapt standard classification methods without considering if those algorithms are appropriated for large-scale problems. CombNET-II was one of the first methods specifically proposed for such kind of a task. Recently, an extension of this model, named CombNET-III, was proposed. The main modifications over the previous model was the substitution of the expert networks by Support Vectors Machines (SVM) and the development of a general probabilistic framework. Although the previous model's performance and flexibility were improved, the low accuracy of the gating network was still compromising CombNET-III's classification results. In addition, due to the use of SVM based experts, the computational complexity is higher than CombNET-II. This paper proposes a new two-layered gating network structure that reduces the compromise between number of clusters and accuracy, increasing the model's performance with only a small complexity increase. This high-accuracy gating network also enables the removal the low confidence expert networks from the decoding procedure. This, in addition to a new faster strategy for calculating multiclass SVM outputs significantly reduced the computational complexity. Experimental results of problems with large number of categories show that the proposed model outperforms the original CombNET-III, while presenting a computational complexity more than one order of magnitude smaller. Moreover, when applied to a database with a large number of samples, it outperformed all compared methods, confirming the proposed model's flexibility.

  • CombNET-III: A Support Vector Machine Based Large Scale Classifier with Probabilistic Framework

    Mauricio KUGLER  Susumu KUROYANAGI  Anto Satriyo NUGROHO  Akira IWATA  

     
    PAPER-Pattern Recognition

      Vol:
    E89-D No:9
      Page(s):
    2533-2541

    Several research fields have to deal with very large classification problems, e.g. handwritten character recognition and speech recognition. Many works have proposed methods to address problems with large number of samples, but few works have been done concerning problems with large numbers of classes. CombNET-II was one of the first methods proposed for such a kind of task. It consists of a sequential clustering VQ based gating network (stem network) and several Multilayer Perceptron (MLP) based expert classifiers (branch networks). With the objectives of increasing the classification accuracy and providing a more flexible model, this paper proposes a new model based on the CombNET-II structure, the CombNET-III. The new model, intended for, but not limited to, problems with large number of classes, replaces the branch networks MLP with multiclass Support Vector Machines (SVM). It also introduces a new probabilistic framework that outputs posterior class probabilities, enabling the model to be applied in different scenarios (e.g. together with Hidden Markov Models). These changes permit the use of a larger number of smaller clusters, which reduce the complexity of the final classifiers. Moreover, the use of binary SVM with probabilistic outputs and a probabilistic decoding scheme permit the use of a pairwise output encoding on the branch networks, which reduces the computational complexity of the training stage. The experimental results show that the proposed model outperforms both the previous model CombNET-II and a single multiclass SVM, while presenting considerably smaller complexity than the latter. It is also confirmed that CombNET-III classification accuracy scales better with the increasing number of clusters, in comparison with CombNET-II.

  • A Solution for Imbalanced Training Sets Problem by CombNET-II and Its Application on Fog Forecasting

    Anto Satriyo NUGROHO  Susumu KUROYANAGI  Akira IWATA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E85-D No:7
      Page(s):
    1165-1174

    Studies on artificial neural network have been conducted for a long time, and its contribution has been shown in many fields. However, the application of neural networks in the real world domain is still a challenge, since nature does not always provide the required satisfactory conditions. One example is the class size imbalanced condition in which one class is heavily under-represented compared to another class. This condition is often found in the real world domain and presents several difficulties for algorithms that assume the balanced condition of the classes. In this paper, we propose a method for solving problems posed by imbalanced training sets by applying the modified large-scale neural network "CombNET-II. " CombNET-II consists of two types of neural networks. The first type is a one-layer vector quantization neural network to turn the problem into a more balanced condition. The second type consists of several modules of three-layered multilayer perceptron trained by backpropagation for finer classification. CombNET-II combines the two types of neural networks to solve the problem effectively within a reasonable time. The performance is then evaluated by turning the model into a practical application for a fog forecasting problem. Fog forecasting is an imbalanced training sets problem, since the probability of fog appearance in the observation location is very low. Fog events should be predicted every 30 minutes based on the observation of meteorological conditions. Our experiments showed that CombNET-II could achieve a high prediction rate compared to the k-nearest neighbor classifier and the three-layered multilayer perceptron trained with BP. Part of this research was presented in the 1999 Fog Forecasting Contest sponsored by Neurocomputing Technical Group of IEICE, Japan, and CombNET-II achieved the highest accuracy among the participants.