1-10hit |
Anish Man Singh SHRESTHA Asahi TAKAOKA Satoshi TAYU Shuichi UENO
The logic mapping problem and the problem of finding a largest sub-crossbar with no defects in a nano-crossbar with nonprogrammable-crosspoint defects and disconnected-wire defects are known to be NP-hard. This paper shows that for nano-crossbars with only disconnected-wire defects, the former remains NP-hard, while the latter can be solved in polynomial time.
We studied whether a statement similar to the Ghouila-Houri's theorem might hold for alternating orientations of cocomparability graphs. In this paper, we give the negative answer. We prove that it is NP-complete to decide whether a cocomparability graph has an orientation that is alternating and acyclic. Hence, cocomparability graphs with an acyclic alternating orientation form a proper subclass of alternately orientable cocomparability graphs. We also provide a separating example, that is, an alternately orientable cocomparability graph such that no alternating orientation is acyclic.
The complexity of the graph isomorphism problem for trapezoid graphs has been open over a decade. This paper shows that the problem is GI-complete. More precisely, we show that the graph isomorphism problem is GI-complete for comparability graphs of partially ordered sets with interval dimension 2 and height 3. In contrast, the problem is known to be solvable in polynomial time for comparability graphs of partially ordered sets with interval dimension at most 2 and height at most 2.
Asahi TAKAOKA Satoshi TAYU Shuichi UENO
We consider the minimum feedback vertex set problem for some bipartite graphs and degree-constrained graphs. We show that the problem is linear time solvable for bipartite permutation graphs and NP-hard for grid intersection graphs. We also show that the problem is solvable in O(n2log 6n) time for n-vertex graphs with maximum degree at most three.
Asahi TAKAOKA Satoshi TAYU Shuichi UENO
An orthogonal ray graph is an intersection graph of horizontal and vertical rays (closed half-lines) in the plane. Such a graph is 3-directional if every vertical ray has the same direction, and 2-directional if every vertical ray has the same direction and every horizontal ray has the same direction. We derive some structural properties of orthogonal ray graphs, and based on these properties, we introduce polynomial-time algorithms that solve the dominating set problem, the induced matching problem, and the strong edge coloring problem for these graphs. We show that for 2-directional orthogonal ray graphs, the dominating set problem can be solved in O(n2 log5 n) time, the weighted dominating set problem can be solved in O(n4 log n) time, and the number of dominating sets of a fixed size can be computed in O(n6 log n) time, where n is the number of vertices in the graph. We also show that for 2-directional orthogonal ray graphs, the weighted induced matching problem and the strong edge coloring problem can be solved in O(n2+m log n) time, where m is the number of edges in the graph. Moreover, we show that for 3-directional orthogonal ray graphs, the induced matching problem can be solved in O(m2) time, the weighted induced matching problem can be solved in O(m4) time, and the strong edge coloring problem can be solved in O(m3) time. We finally show that the weighted induced matching problem can be solved in O(m6) time for orthogonal ray graphs.
Irreversible k-conversion set is introduced in connection with the mathematical modeling of the spread of diseases or opinions. We show that the problem to find a minimum irreversible 2-conversion set can be solved in O(n2log 6n) time for graphs with maximum degree at most 3 (subcubic graphs) by reducing it to the graphic matroid parity problem, where n is the number of vertices in a graph. This affirmatively settles an open question posed by Kyncl et al. (2014).
Asahi TAKAOKA Shingo OKUMA Satoshi TAYU Shuichi UENO
The harmonious coloring of an undirected simple graph is a vertex coloring such that adjacent vertices are assigned different colors and each pair of colors appears together on at most one edge. The harmonious chromatic number of a graph is the least number of colors used in such a coloring. The harmonious chromatic number of a path is known, whereas the problem to find the harmonious chromatic number is NP-hard even for trees with pathwidth at most 2. Hence, we consider the harmonious coloring of trees with pathwidth 1, which are also known as caterpillars. This paper shows the harmonious chromatic number of a caterpillar with at most one vertex of degree more than 2. We also show the upper bound of the harmonious chromatic number of a 3-regular caterpillar.
Asahi TAKAOKA Satoshi TAYU Shuichi UENO
Ordered Binary Decision Diagrams (OBDDs for short) are popular dynamic data structures for Boolean functions. In some modern applications, we have to handle such huge graphs that the usual explicit representations by adjacency lists or adjacency matrices are infeasible. To deal with such huge graphs, OBDD-based graph representations and algorithms have been investigated. Although the size of OBDD representations may be large in general, it is known to be small for some special classes of graphs. In this paper, we show upper bounds and lower bounds of the size of OBDDs representing some intersection graphs such as bipartite permutation graphs, biconvex graphs, convex graphs, (2-directional) orthogonal ray graphs, and permutation graphs.
Asahi TAKAOKA Satoshi TAYU Shuichi UENO
A 2-directional orthogonal ray graph is an intersection graph of rightward rays (half-lines) and downward rays in the plane. We show a dynamic programming algorithm that solves the weighted dominating set problem in O(n3) time for 2-directional orthogonal ray graphs, where n is the number of vertices of a graph.
Canonical decomposition for bipartite graphs, which was introduced by Fouquet, Giakoumakis, and Vanherpe (1999), is a decomposition scheme for bipartite graphs associated with modular decomposition. Weak-bisplit graphs are bipartite graphs totally decomposable (i.e., reducible to single vertices) by canonical decomposition. Canonical decomposition comprises series, parallel, and K+S decomposition. This paper studies a decomposition scheme comprising only parallel and K+S decomposition. We show that bipartite graphs totally decomposable by this decomposition are precisely P6-free chordal bipartite graphs. This characterization indicates that P6-free chordal bipartite graphs can be recognized in linear time using the recognition algorithm for weak-bisplit graphs presented by Giakoumakis and Vanherpe (2003).