The search functionality is under construction.

Author Search Result

[Author] Atsuyoshi NAKAMURA(4hit)

1-4hit
  • KL-UCB-Based Policy for Budgeted Multi-Armed Bandits with Stochastic Action Costs

    Ryo WATANABE  Junpei KOMIYAMA  Atsuyoshi NAKAMURA  Mineichi KUDO  

     
    PAPER-Mathematical Systems Science

      Vol:
    E100-A No:11
      Page(s):
    2470-2486

    We study the budgeted multi-armed bandit problem with stochastic action costs. In this problem, a player not only receives a reward but also pays a cost for an action of his/her choice. The goal of the player is to maximize the cumulative reward he/she receives before the total cost exceeds the budget. In the classical multi-armed bandit problem, a policy called KL-UCB is known to perform well. We propose KL-UCB-SC, an extension of this policy for the budgeted bandit problem. We prove that KL-UCB-SC is asymptotically optimal for the case of Bernoulli costs and rewards. To the best of our knowledge, this is the first result that shows asymptotic optimality in the study of the budgeted bandit problem. In fact, our regret upper bound is at least four times better than that of BTS, the best known upper bound for the budgeted bandit problem. Moreover, an empirical simulation we conducted shows that the performance of a tuned variant of KL-UCB-SC is comparable to that of state-of-the-art policies such as PD-BwK and BTS.

  • An Efficient Approximate Algorithm for the 1-Median Problem on a Graph

    Koji TABATA  Atsuyoshi NAKAMURA  Mineichi KUDO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/01/23
      Vol:
    E100-D No:5
      Page(s):
    994-1002

    We propose a heuristic approximation algorithm for the 1-median problem. The 1-median problem is the problem of finding a vertex with the highest closeness centrality. Starting from a randomly selected vertex, our algorithm repeats to find a vertex with higher closeness centrality by approximately calculating closeness centrality of each vertex using simpler spanning subgraphs, which are called k-neighbor dense shortest path graphs with shortcuts. According to our experimental results using real networks with more than 10,000 vertices, our algorithm is more than 100 times faster than the exhaustive search and more than 20 times faster than the state-of-the-art approximation algorithm using annotated information to the vertices while the solutions output by our algorithm have higher approximation ratio.

  • FOREWORD Open Access

    Atsuyoshi NAKAMURA  

     
    FOREWORD

      Vol:
    E104-D No:3
      Page(s):
    354-354
  • UCB-SC: A Fast Variant of KL-UCB-SC for Budgeted Multi-Armed Bandit Problem

    Ryo WATANABE  Junpei KOMIYAMA  Atsuyoshi NAKAMURA  Mineichi KUDO  

     
    LETTER-Mathematical Systems Science

      Vol:
    E101-A No:3
      Page(s):
    662-667

    We propose a policy UCB-SC for budgeted multi-armed bandits. The policy is a variant of recently proposed KL-UCB-SC. Unlike KL-UCB-SC, which is computationally prohibitive, UCB-SC runs very fast while keeping KL-UCB-SC's asymptotical optimality when reward and cost distributions are Bernoulli with means around 0.5, which are verified both theoretically and empirically.