1-1hit |
Ayae ICHINOSE Atsuko TAKEFUSA Hidemoto NAKADA Masato OGUCHI
Many life-log analysis applications, which transfer data from cameras and sensors to a Cloud and analyze them in the Cloud, have been developed as the use of various sensors and Cloud computing technologies has spread. However, difficulties arise because of the limited network bandwidth between such sensors and the Cloud. In addition, sending raw sensor data to a Cloud may introduce privacy issues. Therefore, we propose a pipelined method for distributed deep learning processing between sensors and the Cloud to reduce the amount of data sent to the Cloud and protect the privacy of users. In this study, we measured the processing times and evaluated the performance of our method using two different datasets. In addition, we performed experiments using three types of machines with different performance characteristics on the client side and compared the processing times. The experimental results show that the accuracy of deep learning with coarse-grained data is comparable to that achieved with the default parameter settings, and the proposed distributed processing method has performance advantages in cases of insufficient network bandwidth between realistic sensors and a Cloud environment. In addition, it is confirmed that the process that most affects the overall processing time varies depending on the machine performance on the client side, and the most efficient distribution method similarly differs.