1-1hit |
Xiaoxin WU Biswanath MUKHERJEE S.-H. Gary CHAN Bharat BHARGAVA
In a fixed-channel-allocation (FCA) cellular network, a fixed number of channels are assigned to each cell. However, under this scheme, the channel usage may not be efficient because of the variability in the offered traffic. Different approaches such as channel borrowing (CB) and dynamic channel allocation (DCA) have been proposed to accommodate variable traffic. Our work expands on the CB scheme and proposes a new channel-allocation scheme--called mobile-assisted connection-admission (MACA) algorithm--to achieve load balancing in a cellular network, so as to assure network communication. In this scheme, some special channels are used to directly connect mobile units from different cells; thus, a mobile unit, which is unable to connect to its own base station because it is in a heavily-loaded "hot" cell, may be able to get connected to its neighboring lightly-loaded cold cell's base station through a two-hop link. Research results show that MACA can greatly improve the performance of a cellular network by reducing blocking probabilities.