The search functionality is under construction.

Author Search Result

[Author] Brian M. KURKOSKI(2hit)

1-2hit
  • Applying Write-Once Memory Codes to Binary Symmetric Asymmetric Multiple Access Channels

    Ryota SEKIYA  Brian M. KURKOSKI  

     
    PAPER-Communication Theory and Systems

      Vol:
    E99-A No:12
      Page(s):
    2202-2210

    Write once memory (WOM) codes allow reuse of a write-once medium. This paper focuses on applying WOM codes to the binary symmetric asymmetric multiple access channel (BS-AMAC). At one specific rate pair, WOM codes can achieve the BS-AMAC maximum sum-rate. Further, any achievable rate pair for a two-write WOM code is also an achievable rate pair for the BS-AMAC. Compared to the uniform input distribution of linear codes, the non-uniform WOM input distribution is helpful for a BS-AMAC. In addition, WOM codes enable “symbol-wise estimation”, resulting in the decomposition to two distinct channels. This scheme does not achieve the BS-AMAC maximum sum-rate if the channel has errors, however leads to reduced-complexity decoding by enabling independent decoding of two codewords. Achievable rates for this decomposed system are also given. The AMAC has practical application to the relay channel and we briefly discuss the relay channel with block Markov encoding using WOM codes. This scheme may be effective for cooperative wireless communications despite the fact that WOM codes are designed for data storage.

  • Towards Efficient Detection of Two-Dimensional Intersymbol Interference Channels

    Brian M. KURKOSKI  

     
    SURVEY PAPER-Communication Theory

      Vol:
    E91-A No:10
      Page(s):
    2696-2703

    This paper gives a survey and comparison of algorithms for the detection of binary data in the presence of two-dimensional (2-D) intersymbol interference. This is a general problem of communication theory, because it can be applied to various practical problems in data storage and transmission. Major results on trellis-based detection algorithms, previously disparate are drawn together, and placed into a common framework. All algorithms have better complexity than optimal detection, and complexity is compared. On the one hand, many algorithms perform within 1.0 dB or better of optimal performance. On the other hand, none of these proposed algorithms can find the optimal solution at high SNR, which is surprising. Extensive discussion outlines further open problems.