1-2hit |
Carlo WILLIAMS Guillaume SABOURET Roman SOBOLEWSKI
We report our studies on electrical current pulse perturbation of superconducting YBa2Cu3O7-x (YBCO) epitaxial thin films. When a current pulse is applied to a YBCO microbridge, a voltage develops across it that depends on the amplitude of the input current pulse. For a total current (input current pulse plus the dc bias) that is lower than the critical current Ic, an inductive voltage response is observed. When the total current exceeds Ic, a resistive response is generated and is observed after a certain delay time td. The origin of the resistive response was analyzed using the Geier and Schon model, which is based on the time-dependent Ginzburg-Landau equation. Our experimental samples consisted of 200-nm-thick epitaxial YBCO films, patterned into coplanar-strip (CPS) transmission lines, containing either two-microbridge or single-microbridge test structures. For the two-microbridge samples, a train of 100-fs-duration optical pulses was used to excite the larger microbridge and generate 2-ps-duration electrical pulses, which were then applied to perturb the smaller microbridge, which was independently biased in the superconducting state. In this case, an electro-optic sampling system was used to measure the YBCO kinetic-inductive voltage responses with the picosecond time resolution. For the single-microbridge structures, an electronic pulse generator was employed to supply the input current pulse, and a 14-GHz sampling oscilloscope was used to monitor the microbridge responses. The latter signals were in very good agreement with the model of Geier and Schon, assuming that the quasiparticle dynamics process that resulted from the nanosecond-wide current excitation was bolometric and followed the phonon escape time τes.
Roman SOBOLEWSKI Ying XU Xuemei ZHENG Carlo WILLIAMS Jin ZHANG Aleksandr VEREVKIN Galina CHULKOVA Alexander KORNEEV Andrey LIPATOV Oleg OKUNEV Konstantin SMIRNOV Gregory N. GOL'TSMAN
We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to 1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (<100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm to 3.5-µm radiation, and 0.63-µm, 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices.