The search functionality is under construction.

Author Search Result

[Author] Che-Wun CHIOU(2hit)

1-2hit
  • Concurrent Error Detection in Montgomery Multiplication over GF(2m)

    Che-Wun CHIOU  Chiou-Yng LEE  An-Wen DENG  Jim-Min LIN  

     
    PAPER-Information Security

      Vol:
    E89-A No:2
      Page(s):
    566-574

    Because fault-based attacks on cryptosystems have been proven effective, fault diagnosis and tolerance in cryptography have started a new surge of research and development activity in the field of applied cryptography. Without magnitude comparisons, the Montgomery multiplication algorithm is very attractive and popular for Elliptic Curve Cryptosystems. This paper will design a Montgomery multiplier array with a bit-parallel architecture in GF(2m) with concurrent error detection capability to protect it against fault-based attacks. The robust Montgomery multiplier array with concurrent error detection requires only about 0.2% extra space overhead (if m=512 is as an example) and requires four extra clock cycles compared to the original Montgomery multiplier array without concurrent error detection.

  • Efficient Design of Low-Complexity Bit-Parallel Systolic Hankel Multipliers to Implement Multiplication in Normal and Dual Bases of GF (2m)

    Chiou-Yng LEE  Che-Wun CHIOU  

     
    PAPER-Circuit Theory

      Vol:
    E88-A No:11
      Page(s):
    3169-3179

    Normal and dual bases are two popular representation bases for elements in GF(2m). In general, each distinct representation basis has its associated different hardware architecture. In this paper, we will present a unified systolic array multiplication architecture for both normal and dual bases, such a unified multiplication architecture is termed a Hankel multiplier. The Hankel multiplier has lower space complexity while compared with other existing normal basis multipliers and dual basis multipliers.