1-2hit |
Chia-Wen CHANG Yuan-Hua CHU Shyh-Jye JOU
This paper presents a cell-based all-digital phase-locked loop (ADPLL) with hierarchical gated digitally controlled oscillator (G-DCO) for low voltage operation, wide frequency range as well as low-power consumption. In addition, a new time-domain hierarchical frequency estimation algorithm (HFEA) for frequency acquisition is proposed to estimate the output frequency in 1.5MF (MF = 3 in this paper) cycles and this fast lock-in time is suitable to the dynamic voltage frequency scaling (DVFS) systems. A hierarchical G-DCO is proposed to work at low supply voltage to reduce the power consumption and at the same time to achieve wide frequency range and precise frequency resolution. The core area of the proposed ADPLL is 0.02635 mm2. In near-threshold region (VDD = 0.36 V), the proposed ADPLL only dissipates 68.2 µW and has a rms period jitter of 1.25% UI at 60 MHz output clock frequency. Under 0.5 V VDD operation, the proposed ADPLL dissipates 404.2 µW at 400 MHz. The fast lock-in time of 4.489 µs and the low jitter performance below 0.5% UI at 400 MHz output clock frequency in the proposed ADPLL are suitable in event-driven or DVFS applications.
Chia-Wen CHANG Kai-Yu LO Hossameldin A. IBRAHIM Ming-Chiuan SU Yuan-Hua CHU Shyh-Jye JOU
This paper presents a varactor-based all-digital phase-locked loop (ADPLL) with a multi-phase digitally controlled oscillator (DCO) for near-threshold voltage operation. In addition, a new all-digital reference spur suppression (RSS) circuit with multiple phases random-sampling techniques to effectively spread the reference clock frequency is proposed to randomize the synchronized DCO register behavior and reduce the reference spur. Because the equivalent reference clock frequency is reserved, the loop behavior is maintained. The area of the proposed spur suppression circuit is only 4.9% of the ADPLL (0.038 mm2). To work reliably at the near-threshold region, a multi-phase DCO with NMOS varactors is presented to acquire precise frequency resolution and high linearity. In the near-threshold region (VDD =0.52 V), the ADPLL only dissipates 269.9 μW at 100 MHz output frequency. It has a reference spur of -52.2 dBc at 100 MHz output clock frequency when the spur suppression circuit is deactivated. When the spur suppression circuit is activated, the ADPLL shows a reference spur of -57.3 dBc with the period jitter of 0.217% UI.