1-2hit |
Chongbin XU Hao WANG Xiaokang LIN
We study the transmission techniques in orthogonal frequency division multiplexing (OFDM) systems with imperfect channel state information at the transmitter (CSIT). We focus on the issue of utilizing the available CSIT by a single forward error control (FEC) code. We first analyze the system performance for the ideal coding case. We then develop a simple but efficient scheme for the practical coding case, which is based on joint FEC coding and linear precoding at the transmitter and iterative linear minimum-mean-square-error (LMMSE) detection at the receiver. Numerical results show that significant performances gains can be achieved by the proposed scheme.
Zhonghao ZHANG Chongbin XU Li PING
In this paper, we present a transmission scheme for a multiple-input multiple-output (MIMO) quasi-static fading channel with imperfect channel state information at the transmitter (CSIT). In this scheme, we develop a precoder structure to exploit the available CSIT and apply spatial coupling for further performance enhancement. We derive an analytical evaluation method based on extrinsic information transfer (EXIT) functions, which provides convenience for our precoder design. Furthermore, we observe an area property indicating that, for a spatially coupled system, the iterative receiver can perform error-free decoding even the original uncoupled system has multiple fixed points in its EXIT chart. This observation implies that spatial coupling is useful to alleviate the uncertainty in CSIT which causes difficulty in designing LDPC code based on the EXIT curve matching technique. Numerical results are presented, showing an excellent performance of the proposed scheme in MIMO fading channels with imperfect CSIT.