The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Chuangao TANG(3hit)

1-3hit
  • Joint Patch Weighting and Moment Matching for Unsupervised Domain Adaptation in Micro-Expression Recognition

    Jie ZHU  Yuan ZONG  Hongli CHANG  Li ZHAO  Chuangao TANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2021/11/17
      Vol:
    E105-D No:2
      Page(s):
    441-445

    Unsupervised domain adaptation (DA) is a challenging machine learning problem since the labeled training (source) and unlabeled testing (target) sets belong to different domains and then have different feature distributions, which has recently attracted wide attention in micro-expression recognition (MER). Although some well-performing unsupervised DA methods have been proposed, these methods cannot well solve the problem of unsupervised DA in MER, a. k. a., cross-domain MER. To deal with such a challenging problem, in this letter we propose a novel unsupervised DA method called Joint Patch weighting and Moment Matching (JPMM). JPMM bridges the source and target micro-expression feature sets by minimizing their probability distribution divergence with a multi-order moment matching operation. Meanwhile, it takes advantage of the contributive facial patches by the weight learning such that a domain-invariant feature representation involving micro-expression distinguishable information can be learned. Finally, we carry out extensive experiments to evaluate the proposed JPMM method is superior to recent state-of-the-art unsupervised DA methods in dealing with cross-domain MER.

  • Target-Adapted Subspace Learning for Cross-Corpus Speech Emotion Recognition

    Xiuzhen CHEN  Xiaoyan ZHOU  Cheng LU  Yuan ZONG  Wenming ZHENG  Chuangao TANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2632-2636

    For cross-corpus speech emotion recognition (SER), how to obtain effective feature representation for the discrepancy elimination of feature distributions between source and target domains is a crucial issue. In this paper, we propose a Target-adapted Subspace Learning (TaSL) method for cross-corpus SER. The TaSL method trys to find a projection subspace, where the feature regress the label more accurately and the gap of feature distributions in target and source domains is bridged effectively. Then, in order to obtain more optimal projection matrix, ℓ1 norm and ℓ2,1 norm penalty terms are added to different regularization terms, respectively. Finally, we conduct extensive experiments on three public corpuses, EmoDB, eNTERFACE and AFEW 4.0. The experimental results show that our proposed method can achieve better performance compared with the state-of-the-art methods in the cross-corpus SER tasks.

  • Cross-Corpus Speech Emotion Recognition Based on Deep Domain-Adaptive Convolutional Neural Network

    Jiateng LIU  Wenming ZHENG  Yuan ZONG  Cheng LU  Chuangao TANG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2019/11/07
      Vol:
    E103-D No:2
      Page(s):
    459-463

    In this letter, we propose a novel deep domain-adaptive convolutional neural network (DDACNN) model to handle the challenging cross-corpus speech emotion recognition (SER) problem. The framework of the DDACNN model consists of two components: a feature extraction model based on a deep convolutional neural network (DCNN) and a domain-adaptive (DA) layer added in the DCNN utilizing the maximum mean discrepancy (MMD) criterion. We use labeled spectrograms from source speech corpus combined with unlabeled spectrograms from target speech corpus as the input of two classic DCNNs to extract the emotional features of speech, and train the model with a special mixed loss combined with a cross-entrophy loss and an MMD loss. Compared to other classic cross-corpus SER methods, the major advantage of the DDACNN model is that it can extract robust speech features which are time-frequency related by spectrograms and narrow the discrepancies between feature distribution of source corpus and target corpus to get better cross-corpus performance. Through several cross-corpus SER experiments, our DDACNN achieved the state-of-the-art performance on three public emotion speech corpora and is proved to handle the cross-corpus SER problem efficiently.