The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Chun-Ming HUANG(2hit)

1-2hit
  • A Low-Cost Continuous-Flow Parallel Memory-Based FFT Processor for UWB Applications

    Chin-Long WEY  Shin-Yo LIN  Hsu-Sheng WANG  Hung-Lieh CHEN  Chun-Ming HUANG  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:1
      Page(s):
    315-323

    In UWB systems, data symbols are transmitted and received continuously. The Fast Fourier Transform (FFT) processor must be able to seamlessly process input/output data. This paper presents the design and implementation of a continuous data flow parallel memory-based FFT (CF-PMBFFT) processor without the use of input buffer for pre-loading the input data. The processor realizes a memory space of two N-words and multiple processing elements (PEs) to achieve the seamless data flow and meet the design requirement. The circuit has been fabricated in TSMC 0.18 µm 1P6M CMOS process with the supply voltage of 1.8 V. Measurement results of the test chip shows that the developed CF-PMBFFT processor takes a core area of 1.97 mm2 with a power consumption of 62.12 mW for a throughput rate of 528 MS/s.

  • Circuit Partition and Reordering Technique for Low Power IP Design

    Kun-Lin TSAI  Shanq-Jang RUAN  Chun-Ming HUANG  Edwin NAROSKA  Feipei LAI  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    613-620

    Circuit partition, retiming and state reordering techniques are effective in reducing power consumption of circuits. In this paper, we propose a partition architecture and a methodology to reduce power consumption when designing low power IP, named PRC (Partition and Reordering Circuit). The circuit reordering synthesis flow consists of three phases: first, evenly partition the circuit based on the Shannon expansion; secondly encode the output vectors of each partition to build an equivalent functional logic. Finally, apply reordering algorithm to reorganize the logic function to reduce power consumption and decrease area cost. The validity of our architecture is proven by applying it to MCNC benchmark with simulation environment.