The search functionality is under construction.

Author Search Result

[Author] Chuyen T. NGUYEN(2hit)

1-2hit
  • Maximum Likelihood Approach for RFID Tag Cardinality Estimation under Capture Effect and Detection Errors

    Chuyen T. NGUYEN  Kazunori HAYASHI  Megumi KANEKO  Hideaki SAKAI  

     
    PAPER-Network

      Vol:
    E96-B No:5
      Page(s):
    1122-1129

    Cardinality estimation schemes of Radio Frequency IDentification (RFID) tags using Framed Slotted ALOHA (FSA) based protocol are studied in this paper. Not as same as previous estimation schemes, we consider tag cardinality estimation problem under not only detection errors but also capture effect, where a tag's IDentity (ID) might not be detected even in a singleton slot, while it might be identified even in a collision slot due to the fading of wireless channels. Maximum Likelihood (ML) approach is utilized for the estimation of the detection error probability, the capture effect probability, and the tag cardinality. The performance of the proposed method is evaluated under different system parameters via computer simulations to show the method's effectiveness comparing to other conventional approaches.

  • A Slotted Access-Inspired Group Paging Scheme for Resource Efficiency in Cellular MTC Networks

    Linh T. HOANG  Anh-Tuan H. BUI  Chuyen T. NGUYEN  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/14
      Vol:
    E105-B No:8
      Page(s):
    944-958

    Deployment of machine-type communications (MTCs) over the current cellular network could lead to severe overloading of the radio access network of Long Term Evolution (LTE)-based systems. This paper proposes a slotted access-based solution, called the Slotted Access For Group Paging (SAFGP), to cope with the paging-induced MTC traffic. The proposed SAFGP splits paged devices into multiple access groups, and each group is then allocated separate radio resources on the LTE's Physical Random Access Channel (PRACH) in a periodic manner during the paging interval. To support the proposed scheme, a new adaptive barring algorithm is proposed to stabilize the number of successful devices in each dedicated access slot. The objective is to let as few devices transmitting preambles in an access slot as possible while ensuring that the number of preambles selected by exactly one device approximates the maximum number of uplink grants that can be allocated by the eNB for an access slot. Analysis and simulation results demonstrate that, given the same amount of time-frequency resources, the proposed method significantly improves the access success and resource utilization rates at the cost of slightly increasing the access delay compared to state-of-the-art methods.