The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Colja SCHUBERT(3hit)

1-3hit
  • Design and Characterization of Dispersion-Tailored Silicon Strip Waveguides toward Wideband Wavelength Conversion

    Hidenobu MURANAKA  Tomoyuki KATO  Shun OKADA  Tokuharu KIMURA  Yu TANAKA  Tsuyoshi YAMAMOTO  Isaac SACKEY  Gregor RONNIGER  Robert ELSCHNER  Carsten SCHMIDT-LANGHORST  Colja SCHUBERT  Takeshi HOSHIDA  

     
    PAPER

      Pubricized:
    2023/05/24
      Vol:
    E106-C No:11
      Page(s):
    757-764

    One of cost-effective ways to increase the transmission capacity of current standard wavelength division multiplexing (WDM) transmission systems is to use a wavelength band other than the C-band to transmit in multi-band. We proposed the concept of multi-band system using wavelength conversion, which can simultaneously process signals over a wide wavelength range. All-optical wavelength conversion could be used to convert C-band WDM signals into other bands in a highly nonlinear fiber (HNLF) by four-wave mixing and allow to simultaneously transmit multiple WDM signals including other than the C-band, with only C-band transceivers. Wavelength conversion has been reported for various nonlinear waveguide materials other than HNLF. In such nonlinear materials, we noticed the possibility of wideband transmission by dispersion-tailored silicon-on-insulator (SOI) waveguides. Based on the CMOS process has high accuracy, it is expected that the chromatic dispersion fluctuation could be reduced in mass production. As a first step in the investigation of the broadness of wavelength conversion using SOI-based waveguides, we designed and fabricated dispersion-tailored 12 strip waveguides provided with an edge coupler at both ends. Each of the 12 waveguides having different widths and lengths and is connected to fibers via lensed fibers or by lenses. In order to characterize each waveguide, the pump-probe experimental setup was constructed using a tunable light source as pump and an unmodulated 96-ch C-band WDM test signal. Using this setup, we evaluate insertion loss, input power dependence, conversion bandwidth and conversion efficiency. We confirmed C-band test signal was converted to the S-band and the L-band using the same silicon waveguide with 3dB conversion bandwidth over 100-nm. Furthermore, an increased design tolerance of at least 90nm was confirmed for C-to-S conversion by shortening the waveguide length. It is confirmed that the wavelength converters using the nonlinear waveguide has sufficiently wide conversion bandwidth to enhance the multi-band WDM transmission system.

  • Ultrafast All-Optical 3R-Regeneration

    Shigeki WATANABE  Reinhold LUDWIG  Fumio FUTAMI  Colja SCHUBERT  Sebastian FERBER  Christof BOERNER  Carsten SCHMIDT-LANGHORST  Joern BERGER  Hans-Georg WEBER  

     
    INVITED PAPER

      Vol:
    E87-C No:7
      Page(s):
    1114-1118

    The configuration and operation of an all-optical 3R-regenerator for high-speed data transmission are described. An all-optical 3R-regenerator using a fiber-based optical switch is proposed and successfully demonstrated in a 160 Gbit/s 3R-regenerating transmission experiment.

  • 160 Gbit/s OTDM Long-Haul Transmission with Long-Term Stability Using RZ-DPSK Modulation Format

    Sebastian FERBER  Carsten SCHMIDT-LANGHORST  Reinhold LUDWIG  Christof BOERNER  Colja SCHUBERT  Vincent MAREMBERT  Marcel KROH  Hans-Georg WEBER  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1947-1954

    We describe a transmission system having a data rate of 160 Gbit/s based on the RZ-DPSK modulation format. The 160 Gbit/s single-polarization signal is generated by optical time division multiplexing technology using the base rate of 40 Gbit/s. The setup is explained and results are given with a special focus on the stability issue of the transmission system. The pulse source, the optical gate for demultiplexing, the clock recovery and the balanced photo-detector are based on semiconductor components. We present long-term bit error measurements (10 hours) over two different long-haul fiber links. The first link comprises 3106 km standard single mode fiber and uses a PMD mitigation scheme. The other link consists of 4 dispersion managed 80 km fiber spans without the need for an additional PMD compensation. Using EDFA amplification solely and also no FEC, error-free operation was achieved over several hours, only limited by slow drift effects in the laboratory system.