1-1hit |
Conghui LI Quanlin ZHONG Baoyin LI
In recent years, the applications of deep learning have facilitated the development of green intelligent transportation system (ITS), and carbon dioxide estimation has been one of important issues in green ITS. Furthermore, the carbon dioxide estimation could be modelled as the fuel consumption estimation. Therefore, a clustering-based neural network is proposed to analyze clusters in accordance with fuel consumption behaviors and obtains the estimated fuel consumption and the estimated carbon dioxide. In experiments, the mean absolute percentage error (MAPE) of the proposed method is only 5.61%, and the performance of the proposed method is higher than other methods.