The search functionality is under construction.

Author Search Result

[Author] Daiki OGAWA(2hit)

1-2hit
  • Blockchain-Based Optimization of Distributed Energy Management Systems with Real-Time Demand Response

    Daiki OGAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER-Systems and Control

      Pubricized:
    2022/05/12
      Vol:
    E105-A No:11
      Page(s):
    1478-1485

    Design of distributed energy management systems composed of several agents such as factories and buildings is important for realizing smart cities. In addition, demand response for saving the power consumption is also important. In this paper, we propose a design method of distributed energy management systems with real-time demand response, in which both electrical energy and thermal energy are considered. Here, we use ADMM (Alternating Direction Method of Multipliers), which is well known as one of the powerful methods in distributed optimization. In the proposed method, demand response is performed in real-time, based on the difference between the planned demand and the actual value. Furthermore, utilizing a blockchain is also discussed. The effectiveness of the proposed method is presented by a numerical example. The importance of introducing a blockchain is pointed out by presenting the adverse effect of tampering the actual value.

  • Effectiveness and Limitation of Blockchain in Distributed Optimization: Applications to Energy Management Systems Open Access

    Daiki OGAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    INVITED PAPER

      Vol:
    E104-A No:2
      Page(s):
    423-429

    A blockchain, which is well known as one of the distributed ledgers, has attracted in many research fields. In this paper, we discuss the effectiveness and limitation of a blockchain in distributed optimization. In distributed optimization, the original problem is decomposed, and the local problems are solved by multiple agents. In this paper, ADMM (Alternating Direction Method of Multipliers) is utilized as one of the powerful methods in distributed optimization. In ADMM, an aggregator is basically required for collecting the computation result in each agent. Using blockchains, the function of an aggregator can be contained in a distributed ledger, and an aggregator may not be required. As a result, tampering from attackers can be prevented. As an application, we consider energy management systems (EMSs). By numerical experiments, the effectiveness and limitation of blockchain-based distributed optimization are clarified.