The search functionality is under construction.

Author Search Result

[Author] Daisuke OKU(2hit)

1-2hit
  • Task Allocation with Algorithm Transformation for Reducing Data-Transfer Bottlenecks in Heterogeneous Multi-Core Processors: A Case Study of HOG Descriptor Computation

    Hasitha Muthumala WAIDYASOORIYA  Daisuke OKUMURA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E93-A No:12
      Page(s):
    2570-2580

    Heterogeneous multi-core processors are attracted by the media processing applications due to their capability of drawing strengths of different cores to improve the overall performance. However, the data transfer bottlenecks and limitations in the task allocation due to the accelerator-incompatible operations prevents us from gaining full potential of the heterogeneous multi-core processors. This paper presents a task allocation method based on algorithm transformation to increase the freedom of task allocation. We use approximation methods such as CORDIC algorithms to map the accelerator-incompatible operations to accelerator cores. According to the experimental results using HOG descriptor computation, the proposed task allocation method reduces the data transfer time by more than 82% and the total processing time by more than 79% compared to the conventional task allocation method.

  • A Fully-Connected Ising Model Embedding Method and Its Evaluation for CMOS Annealing Machines

    Daisuke OKU  Kotaro TERADA  Masato HAYASHI  Masanao YAMAOKA  Shu TANAKA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/06/10
      Vol:
    E102-D No:9
      Page(s):
    1696-1706

    Combinatorial optimization problems with a large solution space are difficult to solve just using von Neumann computers. Ising machines or annealing machines have been developed to tackle these problems as a promising Non-von Neumann computer. In order to use these annealing machines, every combinatorial optimization problem is mapped onto the physical Ising model, which consists of spins, interactions between them, and their external magnetic fields. Then the annealing machines operate so as to search the ground state of the physical Ising model, which corresponds to the optimal solution of the original combinatorial optimization problem. A combinatorial optimization problem can be firstly described by an ideal fully-connected Ising model but it is very hard to embed it onto the physical Ising model topology of a particular annealing machine, which causes one of the largest issues in annealing machines. In this paper, we propose a fully-connected Ising model embedding method targeting for CMOS annealing machine. The key idea is that the proposed method replicates every logical spin in a fully-connected Ising model and embeds each logical spin onto the physical spins with the same chain length. Experimental results through an actual combinatorial problem show that the proposed method obtains spin embeddings superior to the conventional de facto standard method, in terms of the embedding time and the probability of obtaining a feasible solution.