1-1hit |
Deogkyoo LEE Daekeun MOON Ilgu YUN Hagbae KIM
Since components faults occurring at arbitrary places (primarily on the links) affect seriously network performance and reliability, the multicomputers operating in harsh environments should be designed to guarantee normal network-missions in presence of those faults. One solution to the end is a fault-tolerant routing scheme, which enables messages to safely reach their destinations avoiding failed links when transmission of messages is blocked by certain faults. In the paper, we develop a fault-tolerant routing algorithm with deadlock freedom in an n-dimensional meshed network, and validate its efficiency and effectiveness through proper simulations. The aspects of fault-tolerance is adopted by appending partial-adaptiveness and detouring to the e-cube algorithm, while using a wormhole routing for the backbone routing method. The phenomenon of deadlock incurred due to its adaptiveness is eliminated by classifying a physical channel into a couple of virtual channels.