The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Dichao LIU(2hit)

1-2hit
  • Attention-Guided Spatial Transformer Networks for Fine-Grained Visual Recognition

    Dichao LIU  Yu WANG  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2019/09/04
      Vol:
    E102-D No:12
      Page(s):
    2577-2586

    The aim of this paper is to propose effective attentional regions for fine-grained visual recognition. Based on the Spatial Transformers' capability of spatial manipulation within networks, we propose an extension model, the Attention-Guided Spatial Transformer Networks (AG-STNs). This model can guide the Spatial Transformers with hard-coded attentional regions at first. Then such guidance can be turned off, and the network model will adjust the region learning in terms of the location and scale. Such adjustment is conditioned to the classification loss so that it is actually optimized for better recognition results. With this model, we are able to successfully capture detailed attentional information. Also, the AG-STNs are able to capture attentional information in multiple levels, and different levels of attentional information are complementary to each other in our experiments. A fusion of them brings better results.

  • Recursive Multi-Scale Channel-Spatial Attention for Fine-Grained Image Classification

    Dichao LIU  Yu WANG  Kenji MASE  Jien KATO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/12/22
      Vol:
    E105-D No:3
      Page(s):
    713-726

    Fine-grained image classification is a difficult problem, and previous studies mainly overcome this problem by locating multiple discriminative regions in different scales and then aggregating complementary information explored from the located regions. However, locating discriminative regions introduces heavy overhead and is not suitable for real-world application. In this paper, we propose the recursive multi-scale channel-spatial attention module (RMCSAM) for addressing this problem. Following the experience of previous research on fine-grained image classification, RMCSAM explores multi-scale attentional information. However, the attentional information is explored by recursively refining the deep feature maps of a convolutional neural network (CNN) to better correspond to multi-scale channel-wise and spatial-wise attention, instead of localizing attention regions. In this way, RMCSAM provides a lightweight module that can be inserted into standard CNNs. Experimental results show that RMCSAM can improve the classification accuracy and attention capturing ability over baselines. Also, RMCSAM performs better than other state-of-the-art attention modules in fine-grained image classification, and is complementary to some state-of-the-art approaches for fine-grained image classification. Code is available at https://github.com/Dichao-Liu/Recursive-Multi-Scale-Channel-Spatial-Attention-Module.