The search functionality is under construction.

Author Search Result

[Author] Ding LI(2hit)

1-2hit
  • Implementing 128-Bit Secure MPKC Signatures

    Ming-Shing CHEN  Wen-Ding LI  Bo-Yuan PENG  Bo-Yin YANG  Chen-Mou CHENG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:3
      Page(s):
    553-569

    Multivariate Public Key Cryptosystems (MPKCs) are often touted as future-proofing against Quantum Computers. In 2009, it was shown that hardware advances do not favor just “traditional” alternatives such as ECC and RSA, but also makes MPKCs faster and keeps them competitive at 80-bit security when properly implemented. These techniques became outdated due to emergence of new instruction sets and higher requirements on security. In this paper, we review how MPKC signatures changes from 2009 including new parameters (from a newer security level at 128-bit), crypto-safe implementations, and the impact of new AVX2 and AESNI instructions. We also present new techniques on evaluating multivariate polynomials, multiplications of large finite fields by additive Fast Fourier Transforms, and constant time linear solvers.

  • Gene Fingerprinting: Cracking Encrypted Tunnel with Zero-Shot Learning

    Ding LI  Chunxiang GU  Yuefei ZHU  

     
    PAPER-Information Network

      Pubricized:
    2022/03/23
      Vol:
    E105-D No:6
      Page(s):
    1172-1184

    Website Fingerprinting (WF) enables a passive attacker to identify which website a user is visiting over an encrypted tunnel. Current WF attacks have two strong assumptions: (i) specific tunnel, i.e., the attacker can train on traffic samples collected in a simulated tunnel with the same tunnel settings as the user, and (ii) pseudo-open-world, where the attacker has access to training samples of unmonitored sites and treats them as a separate class. These assumptions, while experimentally feasible, render WF attacks less usable in practice. In this paper, we present Gene Fingerprinting (GF), a new WF attack that achieves cross-tunnel transferability by generating fingerprints that reflect the intrinsic profile of a website. The attack leverages Zero-shot Learning — a machine learning technique not requiring training samples to identify a given class — to reduce the effort to collect data from different tunnels and achieve a real open-world. We demonstrate the attack performance using three popular tunneling tools: OpenSSH, Shadowsocks, and OpenVPN. The GF attack attains over 94% accuracy on each tunnel, far better than existing CUMUL, DF, and DDTW attacks. In the more realistic open-world scenario, the attack still obtains 88% TPR and 9% FPR, outperforming the state-of-the-art attacks. These results highlight the danger of our attack in various scenarios where gathering and training on a tunnel-specific dataset would be impractical.