1-2hit |
The current letter extends narrow band (NB) local polynomial approximation (LPA) beamforming to wide band (WB) rapidly moving sources. Instead of the conventional beamformer weight in NB LPA, the proposed method adopts the steered minimum variance (STMV) method that can achieve a high resolution with short time observations. The performance of the proposed algorithm is demonstrated via computer simulations.
Kyung-Sik YOON Do-Hyun PARK Chul-Mok LEE Kyun-Kyung LEE
A computationally efficient time delay and Doppler estimation algorithm is proposed for active sonar with a Linear Frequency Modulated (LFM) signal. To reduce the computational burden of the conventional estimation algorithm, an algebraic equation is used which represents the relationship between the time delay and the Doppler in the cross-ambiguity function (CAF) of the LFM signal. The algebraic equation is derived based on the Fast Maximum Likelihood (FML) algorithm. The use of this algebraic relation enables the time delay and Doppler to be estimated with two 1-D searches instead of the conventional 2-D search.