1-1hit |
DongMing TANG QingXin ZHU Yong CAO Fan YANG
To detect the natural clusters for irregularly shaped data distribution is a difficult task in pattern recognition. In this study, we propose an efficient clustering algorithm for irregularly shaped clusters based on the advantages of spectral clustering and Affinity Propagation (AP) algorithm. We give a new similarity measure based on neighborhood dispersion analysis. The proposed algorithm is a simple but effective method. The experimental results on several data sets show that the algorithm can detect the natural clusters of input data sets, and the clustering results agree well with that of human judgment.